R_f= <u>Dist. moved by sample (cm)</u> Dist. Moved by solvent (cm)

Finding Relative Atomic Mass (RAM)

A sample of 100 atoms contains:

 $RAM = (20 \times 34) + (80 \times 35)$ 100 atoms

Finding empirical formula (EF)

	Al	Br
Divide the mass of each element by	0.51g	4.49g
the M _r (mass number)	27	80
	= 0.0189	= 0.0561
Divide the answers by the smallest	0.0189	0.0561
number to find the simplest ratio	0.0189	0.0189
	= 1	= 2.97
Simplest whole number ratio	1	3
Empirical formula	AlBr ₃	

Molecular mass = $sum of the (M_r)$ mass numbers

Sometimes also called:

Relative Molecular Mass (RMM)

Relative Formula Mass (RFM)

Separate Sciences Only % Yield = <u>Actual Yield</u> X 100 Theoretical Yield

Atom = M_{r} of useful products X 100 Economy Sum of M_{r} for all products

Higher and Separate Sciences Only 1 Mole = 6.02x10²³ molecules

