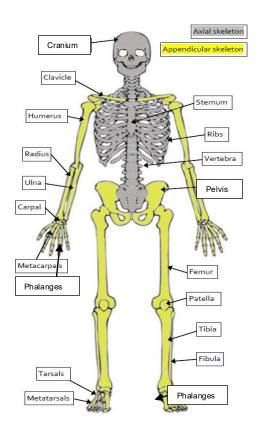


GCSE (9-1)


PHYSICAL EDUCATION

J587

For first teaching in 2016

Applied Anatomy and Physiology

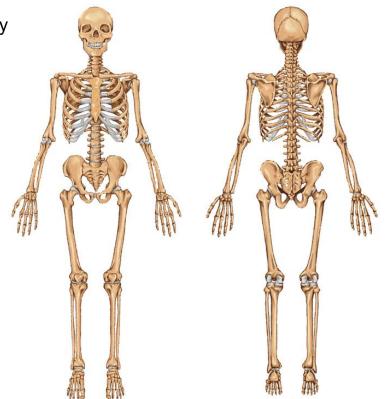
1.1.a. The Structure and Function of the Skeletal System

LEARNING OUTCOMES

By the end of this topic you should ...

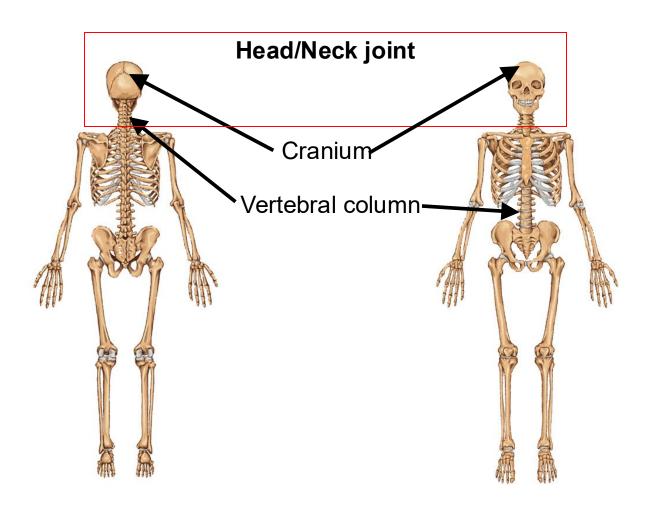
- · Know the name and location of bones in the human body.
- · Be able to describe the 6 functions of the skeleton.
- Know the definition of a synovial joint.
- Know hinge joints and ball and socket joints
- Know the types of movements at hinge and ball and socket joints.
- Know the roles of ligaments, cartilage and tendons.

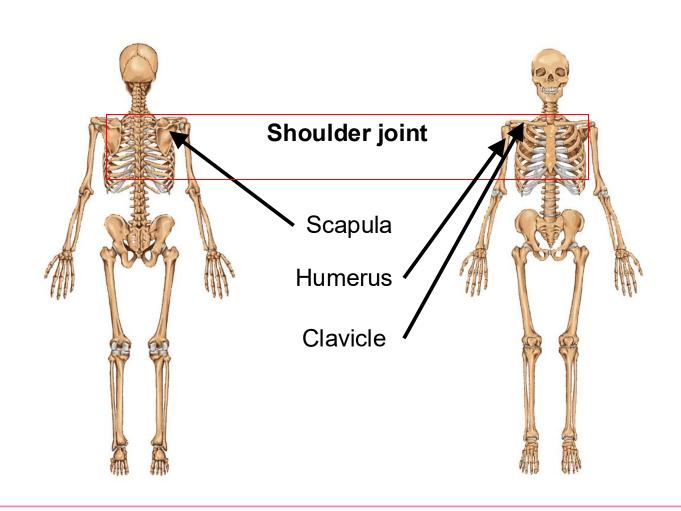
The adult skeleton has **206 bones** and provides the framework for all movement.

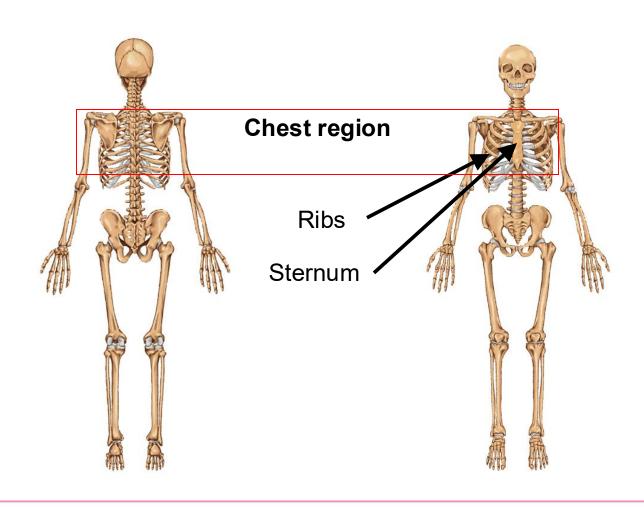

PRACTICAL TASK:

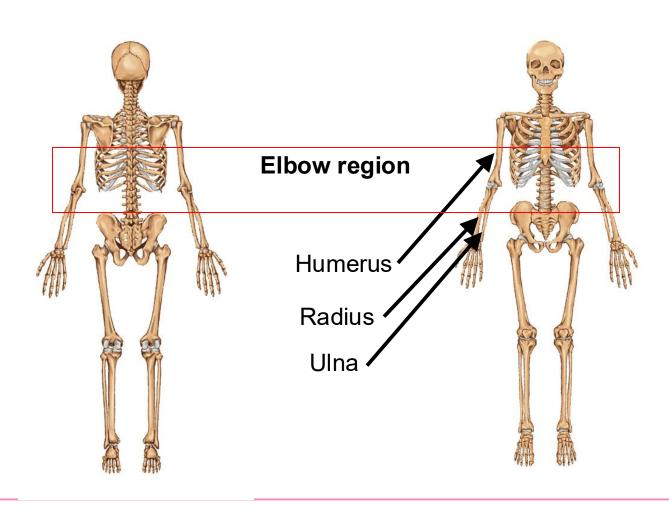
Using the Labels and marker pen on your table, can you identify the location of the major bones on your 'designated dummy!'

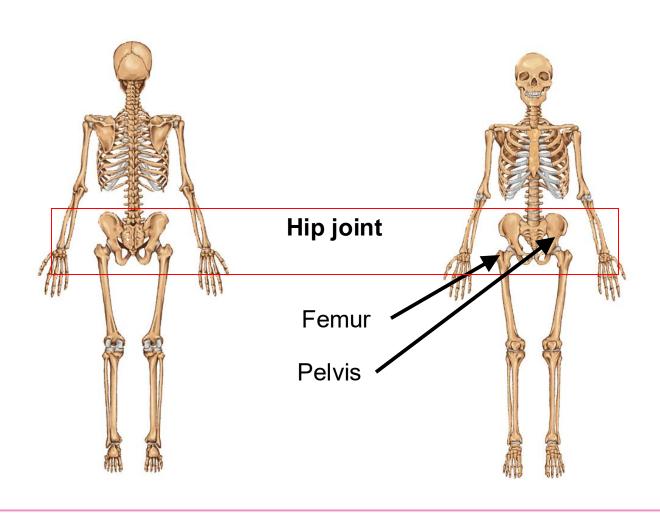
You need to know the location of the following bones:

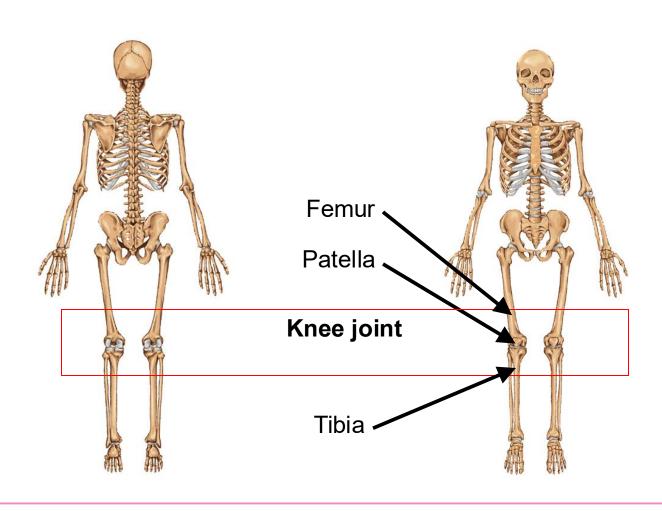

- Cranium
- Vertebrae
- Ribs
- Sternum
- Clavicle
- Scapula
- Humerus
- Ulna
- Radius
- Carpals
- Metacarpals

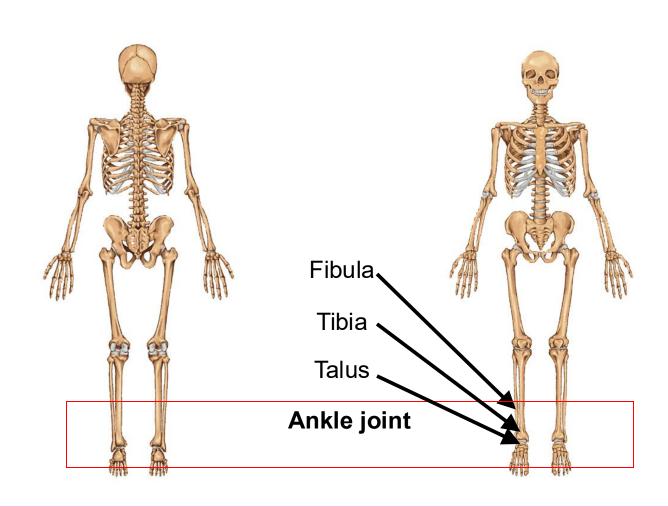

- Phalanges
- Pelvis
- Femur
- Patella
- Tibia
- Fibula
- Tarsals
- Metatarsals

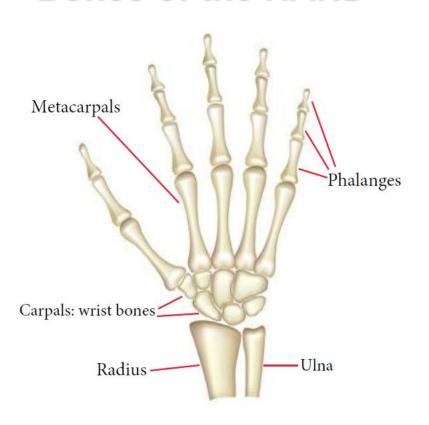



So How did we do?!


Who will be the winning table! For each bone you correctly label you will earn yourself a point! Most points WIN!







Bones of the HAND

Bones of the FOOT

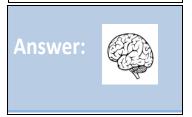
And Our Winners Arel

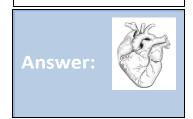
How might we remember these? https://www.youtube.com/watch?v=aUHh8uMdBso

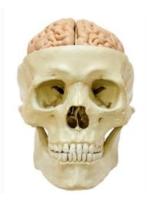
Did you get these?

- 1. To give Posture and Support to the body
- 2. To allow Movement of the body
- 3. To give Protection to the internal organs
- 4. To produce Blood (White and Red) Cells
- 5. To Store Minerals

1. Support

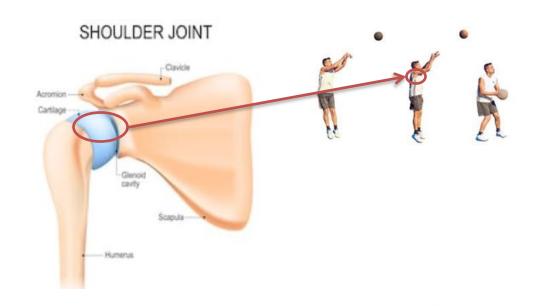

It gives the body **support**, enabling us to stand. The bones of the body are held together by **ligaments**. The skeleton provides a framework for the muscles, which are attached to bones by **tendons**.


2. Protection


Some of our body parts, such as the brain, are very delicate and need **protection**. Bones can protect body parts from **impacts** and **injuries**.

What vital organ does the Cranium protect?

What vital organ does the Rib Cage protect?



3. Movement

The skeleton has many different joints. At joints, muscles and bones form levers to allow sporting movements.

4. Posture & Structural Shape

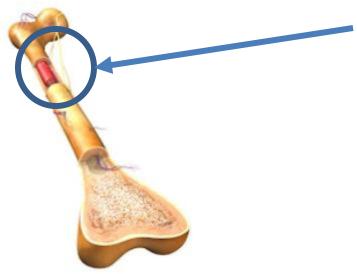
The skeleton acts as a framework.

Muscles are firmly attached to bones forming our body shape and holds us upright.

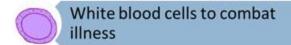
5. Mineral Storage

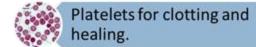
The minerals in your bones serve two main functions.

Minerals transform spongy bone matrix into a rigid structure and in turn increase density and strength.



Your bones also function as a mineral storage depot, releasing dissolved calcium, phosphorus and magnesium into your bloodstream when needed.


6. Blood cell production


The ends of long bones and some other bones including the ribs, humerus, femur and even vertebrae bones, contain red bone marrow.

This is where the red blood cells are produced which carry oxygen.

Other functions include:

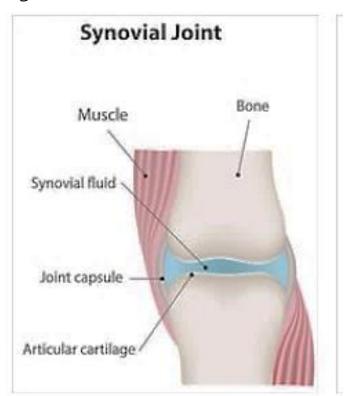
Types of synovial joint

Structure of the skeleton

"A joint is a place where two or more bones meet"

The skeletal system has a number of joints which are responsible for the huge range of movement.

There are several different types of joint in the body which allow different types of movement.

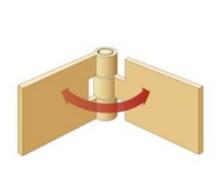


These different Type of Joint include:

Types of synovial joint

Synovial Joints https://www.youtube.com/watch?v=0cYal_hitz4

A Synovial Joint is a freely movable joint in which the bones surfaces are covered by cartilage, called **Articular Cartilage**, and connected by a **fibrous connective tissue** capsule lined with Synovial Fluid

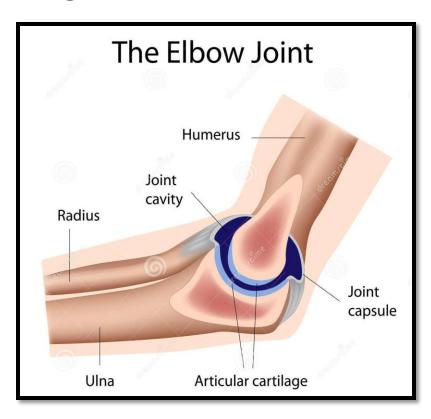


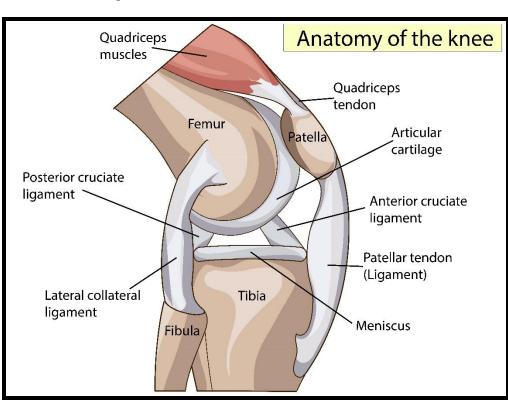
Types of synovial joint (hinge joint)

Hinge Joints Only allow flexion and extension movement like the hinge on a door.

Examples found in the body are the knee and elbow joints

Why are these joints important for sport?


These joint are extremely powerful and in conjunction with surrounding muscles can produce power and speed *i.e. Knee drive during a 100m sprint*


The Articulating bones are bones that move within a joint, for example the Articulating bones for the elbow joint are:

- 1. Humerus
- 2. Radius
- 3. Ulna

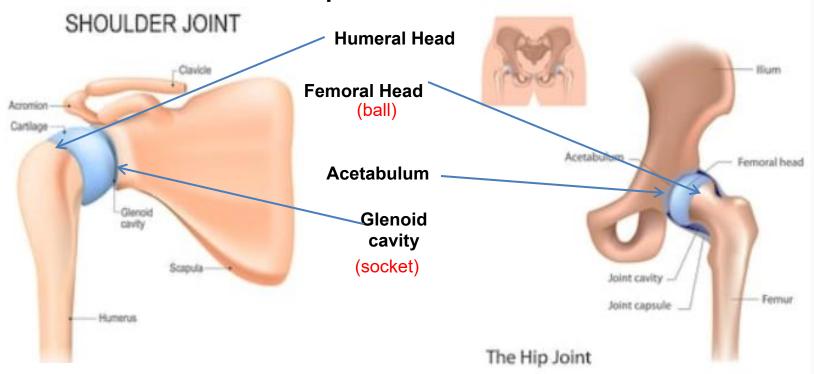
Types of synovial joint (hinge joint)

Hinge Joints You need to know the make up of the Knee and Elbow Joints.

Types of movement at hinge joints

Movement at A Hinge Joint

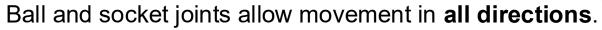
FLEXION – Decreasing the angle at a joint. (Bending the leg at the knee joint)


<u>EXTENSION</u> - Increasing the angle at a joint. (Straightening the leg at the knee joint)

TASK: Describe a specific sporting example of both Flexion and Extension at both the Knee and the Elbow.

Types of synovial joint (ball and socket)

Ball & Socket Joints You need to know the make up of the Shoulder and Hip Joints.


Types of synovial joint (ball and socket)

Ball & Socket Joints You need to know the make up of the Shoulder and Hip Joints.

Ball & Socket Joints

Where the rounded end of one bone fits inside the cup-shaped end of another bone.

These are the most mobile joints in the body.

Examples found in the body include the shoulder and hip joints.

Why are these joints important for sport?

Most sporting movements require the type of movement the shoulder and hip allow. *i.e. tennis* serve

Movement at a Ball & Socket joint

Flexion and Extension: Increasing and decreasing the angle at the joint.

Abduction and Adduction: determined from the 'MIDLINE' of the body.

Adduction & Abduction

ADDUCTION -

Sideways moving limb towards midline of the body.

REMEMBER: Adduction is to ADD towards the midline.

ABDUCTION -

Sideways moving limb away from midline of the body

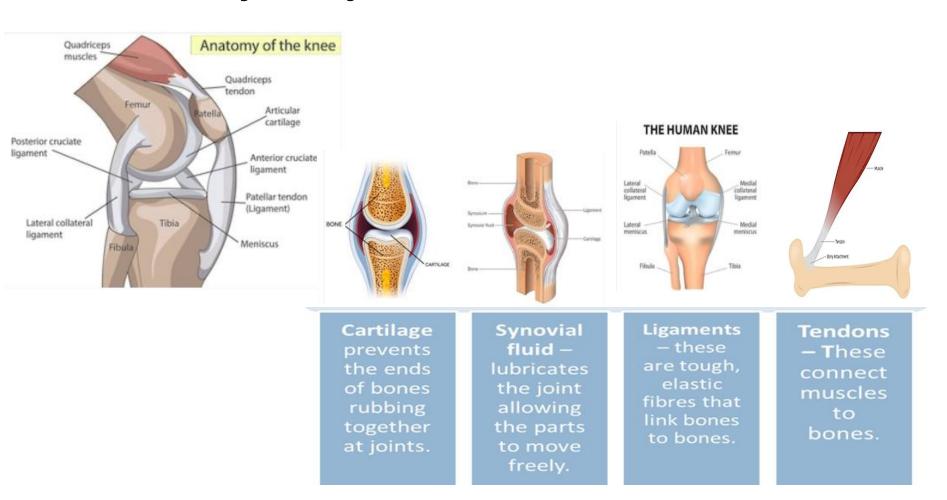
REMEMBER: Abduction is to TAKE AWAY from the midline.

Movement at a Ball & Socket joint

Rotation/Circumduction: The joint moves in a circular motion. e.g. Service action or bowling action.

Let's See if you Fully Understand

TASK 1: Draw and describe a simple diagram of the Knee Joint and label the bones that move around this (the Articulating Bones)


TASK 2: Name a Physical Activity that involves both Flexion and Extension of the Knee Joint

TASK 3: Draw and describe a simple diagram of the Hip Joint and label the bones that move around this (the Articulating Bones)

TASK 4: Describe a skill in a physical activity that involves both abduction and adduction of the hip joint.

Other components of joints

Structure of a synovial joint

Other components of joints

Structure of a synovial joint

YOU NEED TO KNOW THESE!

Ligaments:

Bands of connective tissue that connect bone to bone & stabilise moment.

Cartilage:

Designed to reduce friction and act as a shock absorber for the joint

Synovial fluid:

Acts like an oil and lubricates the joint.

Tendons:

Attach Muscle to Bone (example - Achilles tendon)

A Synovial Joint

is a freely movable joint in which the bones surfaces are covered by cartilage, called **Articular Cartilage**, and connected by a **fibrous connective tissue** capsule lined with Synovial Fluid

Apply your knowledge

TASK: USE YOUR KNOWLEDGE OF THE SKETAL SYSTEM TO LABEL AS MUCH INFO AS POSSIBLE ON THE ATHLETE BELOW.
(BONES / JOINTS /MOVEMENT ACTIONS).

OCR Resources: the small print

OCR's resources are provided to support the delivery of OCR qualifications, but in no way constitute an endorsed teaching method that is required by the Board, and the decision to use them lies with the individual teacher. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within these resources.

Our documents are updated over time. Whilst every effort is made to check all documents, there may be contradictions between published support and the specification, therefore please use the information on the latest specification at all times. Where changes are made to specifications these will be indicated within the document, there will be a new version number indicated, and a summary of the changes. If you do notice a discrepancy between the specification and a resource please contact us at:

resources, feedback@ocr.org.uk.

© OCR 2018 - This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of this work. OCR acknowledges the use of the following content:

- 3.5-11 > Skeleton / stihii / Shutterstock.com
- 12 > Hand / La Gorda / Shutterstock.com
- 12 > Foot / corbac40 / Shutterstock.com
- 15 > Foot / Sebastian Kaulitzki / Shutterstock.com
- 15 > Skull with brain / kavring / Shutterstock.com
- 15 > Brain / maglyvi / Shutterstock.com
- 15 > Heart / Bernardo Ramonfaur / Shutterstock.com
- 16 > Running skeleton / tose / Shutterstock.com
- 16 > Sitting skelet on / tose / Shutterstock.com
- 16, 24, 26 > Shoulder / Designua / Shutterstock.com
- 16 > Throwing men / Gabriele Maltinti / Shutterstock.com
- 17, 18 > Bone / ciencepics / Shutterstock.com
- 17 > Glass Milk / Kenneth Man / Shutterstock.com
- 19 > Skeleton head / Sebastian Kaulitzki / Shutterstock.com
- 19 > Rugby player / wavebreakmedia / Shutterstock.com

- 20 > Synovial joint / joshya / Shutterstock.com
- 21 > Knee joint / Sebastian Kaulitzki / Shutterstock.com
- 21, 26 > Hinge / Aldona Griskeviciene / Shutterstock.com
- 21.28 > Rowers / Javsi / Shutterstock.com
- 21, 26, 27 > Tennis / Franck Camhi / Shutterstock.com
- 22 > Elbow joint / Alila Medical Media / Shutterstock.com
- 22 > Knee / Viktorija Panchenko / Shutterstock.com
- 23 > Flexion / Ljupco Smokovski / Shutterstock.com
- 23 > Extension / Ljupco Smokovski / Shutterstock.com
- 24 > Hip / Alila Medical Media / Shutterstock.com
- 25 > Hip / Oleksii Natykach / Shutterstock.com
- 27 > Outline / Anna Rassadnikova / Shutterstock.com
- 27, 29 > Abduction / Auttapon Wongtakeaw / Shutterstock.com
- 28 > Beach ball / Kzenon / Shutterstock.com

- 29 > Bowler 1 / imagedb.com / Shutterstock.com
- 29, 31 > Bowler 2 / imagedb.com / Shutterstock.com
- 29 > Bowler 3 / imagedb.com / Shutterstock.com
- 30 > Anatomy of the knee / Viktoriia Panchenko / Shutterstock.com
- 30 > Cartilage / Tefi / Shutterstock.com
- 30 > Synovial fluid / Blamb / Shutterstock.com
- 30 > Human Knee / Designua / Shutterstock.com
- 30 > Tendon / gritsalak karalak / Shutterstock.com
- 31 > Pushups / Di Studio / Shutterstock.com
- 31 > Runner / MinDof / Shutterstock.com
- 31 > Football / Valua Vitaly / Shutterstock.com

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources. feedback@ocr.org.uk