YEAR 9 - REASONING WITH NUMBER

@whisto maths

Numbers

 \bigcirc = 1

The act of counters

into their

negative is turning

them over

b = -4

What do I need to be able to do?

By the end of this unit you should be able to:

- Identify integers, real and rational numbers
- Work with directed number
- Solve problems with number
- Find HCF/ LCM
- Odd/ Subtract fractions
- Multiply/ Divide fractions
- Write numbers in standard form

Keywords

Integer: a whole number that is positive or negative

Rational: a number that can be made by dividing two integers

Irrational: a number that cannot be made by dividing two integers

Inverse operation: the operation that reverses the action

Quotient: the result of a division

Product: the result of a multiplication.

Multiples: found by multiplying any number by positive integers

Factor: integers that multiply together to get another number

Integers, real and rational numbers

Rational — root word: ratio

Real numbers: $\frac{2}{3}$ stems from 2:1 ($\frac{2}{3}$ of the whole)

Irrational numbers: $\sqrt{2}$ the solution is a decimal that never ends and does not repeat.

The square root of a negative is not a real number and cannot be found

Common factors are factors two or more numbers share

HCF — Highest common factor

HCF of 18 and 30

LCM — Lowest common multiple

LCM of 9 and 12

9, 18, 27, 36, 45, 54

12, 24, 36, 48, 60

I CM = 36

The first time their multiples match

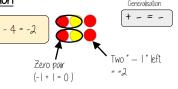
Standard form

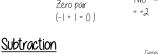
any number A x 10 n between I and

less than 10

= 600000 + 800000

= 1400000

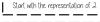

 $15 \div 0.3 \times 10^5 \div 10^3$

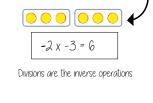

 $(1.5 \times 10^5) \div (0.3 \times 10^3)$

= 1.4 x 10⁵

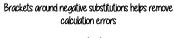
 $=5 \times 10^{2}$

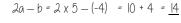
Directed number **Oddition**

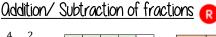




Generalisation

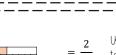




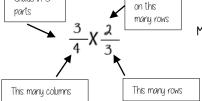


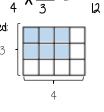
a = 5

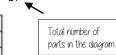
Multiplication


Shade in 3

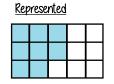
========


Repeat it




denominators

Multiplication/Division of fractions 🔞



Parts shaded

Remember to use reciprocals

YEAR 9 - REASONING WITH NUMBER...

@whisto_maths

Using Percentages

What do I need to be able to do?

By the end of this unit you should be able to:

- Use FDP equivalence
- Calculate percentage increase and decrease
- Express percentage change
- Solve reverse percentage problems
- Solve percentage problems (calculator and non calculator problems)

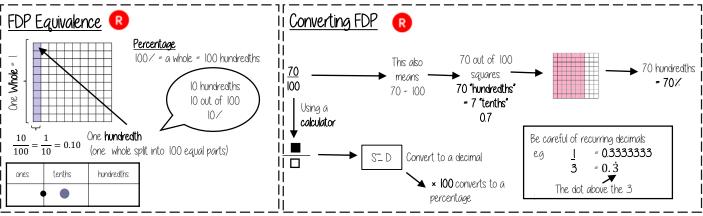
Keywords

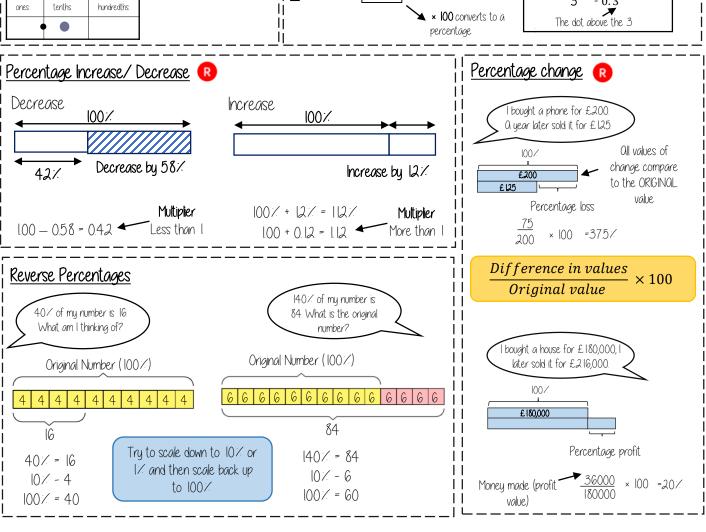
Percent: parts per 100 — written using the 🗸 symbol

Decimal: a number in our base 10 number system. Numbers to the right of the decimal place are called decimals. **Fraction:** a fraction represents how many parts of a whole value you have.

Equivalent: of equal value.

Reduce: to make smaller in value.


Growth: to increase / to grow.


Integer: whole number, can be positive, negative or zero.

Invest: use money with the goal of it increasing in value over time (usually in a bank).

Multiplier: the number you are multiplying by.

| **Profit**: the income take away any expenses/ costs.

YEAR 9 - REASONING WITH NUMBER.

@whisto maths

Maths & Money

What do I need to be able to do?

By the end of this unit you should be able to:

- Solve problems with bills and bank statements
- Calculate simple interest
- Calculate compound interest
- Calculate wages and taxes
- Solve problems with exchange rates
- Solve unit pricing problems

Keywords

Credit: money being placed into a bank account

Debit: money that leaves a bank account

Balance: the amount of money in a bank account

Expense: a cost/outgoing.

Deposit: an initial payment (often a way of securing an item you will later pay for)

Multiplier: a number you are multiplying by (Multiplier more than I = increasing, less than I = decreasing)

Per Onnum: each year

Currency: the type of money a country uses.

Unitary: one — the cost of one.

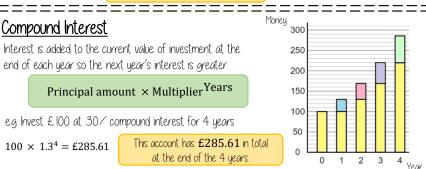
Bills and Bank Statements

Bills — tell you the amount items cost and can show how

much money you need to pay.

Some can include a total

Some can include a total	11010	
Some can include a local	N.A.II	
Look for different units	Milk	
(Is it in pence or pounds)	Tea	


<u>ents</u> s cost and can show how			
Menu	Price		
Milk	89p		
Tea	£1.50		

Bank Statements

Bank statement can have negative balances if the money spent is higher than the money coming into the account

Date	Description	Credit	Debit	Balance
l9th Sept	Salary	£1500		£1500
l9th Sept	Mortgage		£600	£900
25 th Setp	Bday Money	£15		£915

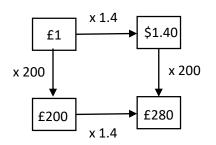
Simple Interest For each year of investment the interest remains the same Principal amount ×Interest Rate × Years 100 Principal amount is the amount invested in the account. e.g. hvest £ 100 at 30 / simple interest for 4 years 100 × 30 × 4

Value Odded Tax (VOT)

VOT is payable to the government by a business. In the UK VOT is 20% and added to items that are bought.

Essential items such as food do not include VOT.

Wages and Taxes


Salaries fall into tax brackets — which means they pay this much each month from their salary.

Taxable Income	Tax Rate
£12 501 to £50 000	20%
£50 001 to £150 000	40%
over £150 000	45%

Over time:

Time and a half — means 1.5 times their hourly rate

When making estimates it is also useful to use <u>estimates</u> to check if our solution is reasonable.

Use inverse operations to reverse the exchange process

Common Currencies		
United Kingdom	£	Pounds
United States of Omerica	\$	Dollars
Europe	€	Euros

Unit Pricing

4 Oranges £1 5 cupcakes £1.20

4 = £1.00 $\div 2$ 5 = £1.20 $\div 5$ 1 = £0.25 $\div 2$ 1 = £0.20

3 + 2 = £0.20

To calculate unit per cost you divide by the cost.

Cupcakes are the best value as one item has the cheapest value

There is a directly proportional relationship between the cost and number of units

YEAR 9 - REASONING WITH GEOMETRY

@whisto maths

Deduction

What do I need to be able to do?

By the end of this unit you should be able to:

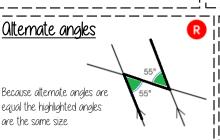
- Identify angles in parallel lines
- Solve anale problems
- Make conjectures with angles
- Make conjectures with shapes

Keywords

Parallel: two straight lines that never meet with the same gradient.

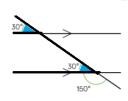
Perpendicular: two straight lines that meet at 90°

Transversal: a line that crosses at least two other lines.

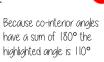

Sum: the result of adding two or more numbers.

Conjecture: a statement that might be true but is not proven.

Equation: a statement that says two things are equal


Polygon: a 2D shape made from straight edges.

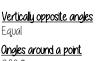
Counterexample: an example that disproves a statement



¦¦ <u>Corresponding angles</u>

Because corresponding angles are equal the highlighted angles are the

R : Co-interior angles



Ois angles on a line add up to 180° co-interior angles can also be calculated from applying alternate/corresponding

Solving angle problems

Ongles on a straight Line

1800

Form an equation

$$2x + 4x = 180^{\circ}$$

State the reason

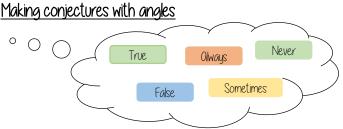
The sum of anales on a straight line is 180°

 $2x + 4x = 180^{\circ}$

 $6x = 180^{\circ}$

 $x = 30^{\circ}$

Interior Ongles


The angles enclosed by the polygon

(number of sides -2) x 180

<u>Triangles</u>

Sum of angles is 180 °

Isosceles have the same

Proving a conjecture

a pattern is noticed for many cases

Disproving a conjecture

Only one counterexample is needed to disprove a conjecture

Apply the angle rules

The sum of angles in a triangle is 180°

Test the theory 180 - 70 - 20 = 90

$$180 - 85 - 5 = 90$$

180 - 45 - 45 = 90

Make conjecture

The anale that meets the circumference in a semi circle is 90

Making conjectures with shapes

Keywords and facts to recall with shape

Orea: the amount of space inside a shape Perimeter: the length around a shape Regular Polygons: All sides and angles are equal

Quadrilateral Facts

Oll sides equal size Oll anales 90°

<u>Parallelogram</u>

Opposite sides are parallel Opposite angles are equal Co-interior angles

Rhombus

Oll sides equal size Opposite angles are equal

Kite

No parallel lines Equal lengths on top sides Equal lengths on bottom One pair of equal angles

YEAR 9 — REASONING WITH GEOMETRY... Rotation & Translation

@whisto maths

What do I need to be able to do?

By the end of this unit you should be able to:

- Identify the order of rotational symmetry
- Rotate a shape about a point on the
- Rotate a shape about a point not on a
- Translate by a given vector
- Compare rotations and reflections

Keywords

Rotate: a rotation is a circular movement

Symmetry: when two or more parts are identical after a transformation.

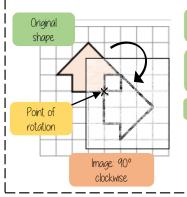
Reaular: a regular shape has angles and sides of equal lengths. **Invariant**: a point that does not move after a transformation.

Vertex: a point two edges meet. Horizontal: from side to side

Vertical: from up to down

Rotational Symmetry

Tracing paper helps check rotational symmetry


I. Trace your shape (mark the centre point)

2. Rotate your tracing paper on top of the original through 360°

3. Count the times it fits back into itself

O regular pentagon has rotational symmetry of order 5

Rotate from a point (in a shape)

I. Trace the original shape (mark the point of rotation)

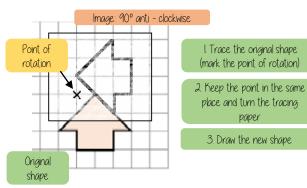
2 Keep the point in the same place and turn the tracing

3. Draw the new shape

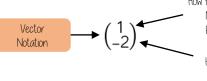
П

П

П

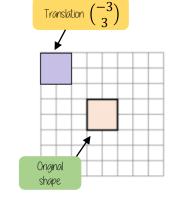

П

П

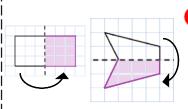

П

П

Rotate from a point (outside a shape)

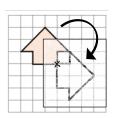


Translation and vector notation


How far left or right to move Negative value (left) Positive value (right)

> How far up or down to move Negative value (down) Positive value (up)

Every vertex has been translated by the same amount


Compare rotations and reflections

Reflections are a mirror image of the original shape.

Information needed to perform a reflection

- Line of reflection (Mirror line)

Rotations are the movement of a shape in a circular motion

Information needed to perform a rotation:

- Point of rotation
- Direction of rotation
- Degrees of rotation