YEAR 8 - ALGEBRAIC TECHNIQUES

@whisto maths

Brackets, Equations & Inequalities

What do I need to be able to do?

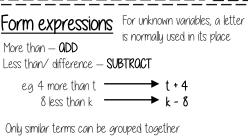
By the end of this unit you should be able to:

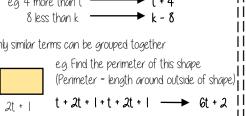
- Form Expressions
- Expand and factorise single brackets
- Form and solve equations
- Solve equations with brackets
- Represent inequalities
- Form and solve inequalities

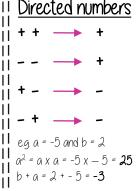
Keywords

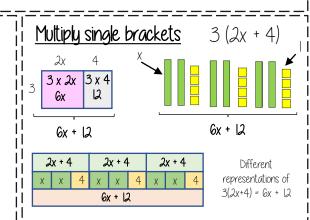
Simplifu: grouping and combining similar terms

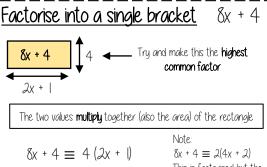
Substitute: replace a variable with a numerical value

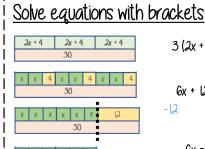

Equivalent: something of equal value


Coefficient: a number used to multiply a variable

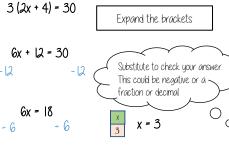

Product: multiply terms


Highest Common Factor (HCF): the biggest factor (or number that multiplies to give a term)


Inequality: an inequality compares who values showing if one is greater than, less than or



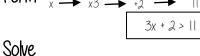




3(2x + 4) = 30

Simple Inequalities

< less than < Less than or eaual to > More than ≥ More than or equal to


x < 10Sau this out loud "x is a value less than 10" 10 > xNote: Say this out loud x<10 and 10>x 10 is more than the value' represent the same

x + 2 < 20

"my value + 2 is less than or equal to 20" The biggest the value can be is 18

Form and solve inequalities

Two more than treble mu number is greater than 11 Find the possible range of values Form

¹¹ Check

This would suggest any value bigger than 3 satisfies the statement 3 x 3 + 2 = 11 ✓ 10 x 3 + 2 = 32 V

<u>Olgebraic</u> constructs

Expression

a sentence with a minimum of two numbers and one maths operation

Equation

a statement that two things are equal

a single number or variable

Identitu

On equation where both sides have variables that cause the same answer includes ≡

Formula

a rule written with all mathematical symbols e.g. area of a rectangle $Q = b \times h$

YEAR 8 - ALGEBRAIC TECHNIQUES

@whisto maths

Sequences

What do I need to be able to do?

By the end of this unit you should be able to:

- Generate a sequence from term to term or position to term rules
- Recognise arithmetic sequences and find
- Recognise geometric sequences and other sequences that arise

Keywords

Sequence: items or numbers put in a pre-decided order

Term: a sinale number or variable

Position: the place something is located

Linear: the difference between terms increases or decreases (+ or -) by a constant value each time Non-linear: the difference between terms increases or decreases in different amounts, or by x or ÷

Difference: the gap between two terms

Orithmetic: a sequence where the difference between the terms is constant

Geometric: a sequence where each term is found by multiplying the previous one by a fixed non zero

Linear and Non Linear Sequences

Linear Sequences — increase by addition or subtraction and the same amount each time

Non-linear Sequences — do not increase by a constant amount — quadratic, geometric and Fibonacci.

- Do not plot as straight lines when modelled graphically
- The differences between terms can be found by addition, subtraction, multiplication or

Fibonacci Sequence — look out for this type of sequence

Each term is the sum of the previous two terms.

power for n

Sequences from algebraic rules This is substitution! 3n + 7

This will be linear - note the single

power of n. The values increase at a constant rate

2n - 5 -

Substitute the number of the term you are looking for in place of 'n'

This is not linear as there is a

|st term = 2(1) - 5 = -3

 2^{nd} term = 2 (2) - 5 = -1

 100^{th} term = 2 (100) - 5 = 195

Checking for a term in a sequence Form an equation

Is 201 in the sequence 3n - 4?

3n - 4 = 201

Solving this will find the position of the term in the sequence. $oldsymbol{\mathsf{I}}$ ONLY an integer solution can be in the sequence.

Sequence in a table and araphically

Position: the place in the sequence

Term: the number or variable (the number of squares in each image)

Position

Graphically

The **term** in

has 7 squares"

position 3

Because the terms increase by the same addition each time this

is **linear** — as seen in the graph

Complex algebraic rules

Misconceptions and comparisons $(2n)^{2}$

2 tijmes whatever n squared is

|st term = 2 x |2 = 2

2st term = 2 x 22 = 8

 $n(n + 5) \blacktriangleleft$

|st term = $(2 \times 1)^2 = 4$ 2st term = (2 x 2)2 = 16

 100^{th} term = $(2 \times 100)^2$ = 40000

2 times n then square the answei

 100^{th} term = 2×100^{2} = 2000

st term = 1(1 + 5) = 6 2^{st} term = 2(2 + 5) = 14

 100^{th} term = 100 (100 + 5) = 10500

You don't need to expand the

Finding the algebraic rule

This is the 4 ____ times table

4n

→ 4, 8, 12, 16, 20...

This has the same constant 7, 11, 15, 19, 22 difference — but is 3 more than the original sequence

4n + 3

This is the constant

difference between the terms

in the sequence

This is the comparison (difference) between the original and new sequence

YEAR 8 - ALGEBRAIC TECHNIQUES ...

@whisto_maths

Indices

What do I need to be able to do?

By the end of this unit you should be able to:

- Odd/ Subtract expressions with indices
- Multiply expressions with indices
- Divide expressions with indices

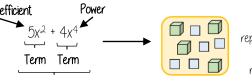
Expression

- Know the addition law for indices
- Know the subtraction law for indices

| Keywords

Base: The number that gets multiplied by a power

Power: The exponent — or the number that tells you how many times to use the number in multiplication Exponent: The power — or the number that tells you how many times to use the number in multiplication


I Indices: The power or the exponent.

Coefficient: The number used to multiply a variable

Simplifu: To reduce a power to its lowest term

Product: Multiply

Oddition/ Subtraction with indices Coefficient Power

Each square represents x² and each cube represents x⁴

Only similar terms can be simplified If they have different powers, they are unlike terms

$$5x^2 + 2x^2 \longrightarrow 7x^2$$

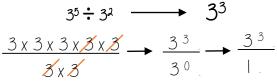
$$5x^{2} + 6x^{4} - 3x^{2} + x^{4}$$

Multiply expressions with indices

5tx9t $\equiv 5xtx9xt$ $\equiv 5x9xtxt$ $\equiv 45t^{2}$

There are often misconceptions with this calculation but break down the powers

Divide expressions with indices


 $\frac{1}{15ab^6} \rightarrow 3x5xaxbxbxbxbxbxb$

The base number is all the same so the terms can be simplified

3⁵ x 3² = (3 x 3 x 3 x 3 x 3) x (3 x 3)

Oddition/Subtraction laws for indices

Oddition law for indices $A^{m} X A^{n} = A^{m+n}$

Subtraction law for indices

$$a^m \div a^n = a^{m-n}$$

Cross cancelling factors shows cancels the expression

This expression cannot be divided (cancelled down) because there are no common factors or similar terms

YEAR 8 - DEVELOPING NUMBER..

@whisto maths

Fractions & Percentages

What do I need to be able to do?

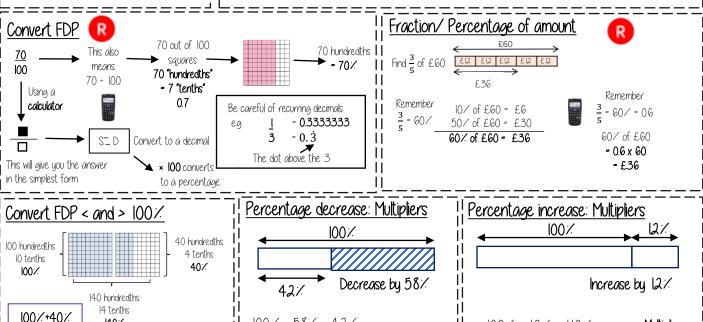
Bu the end of this unit you should be able to:

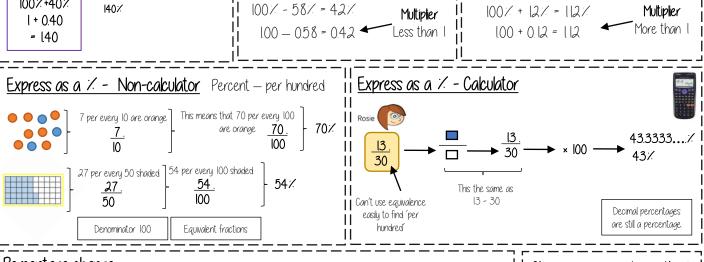
- Convert between FDP less than and more than 100.
- Increase or decrease using multipliers.
- Express an amount as a percentage.
- Find percentage change.

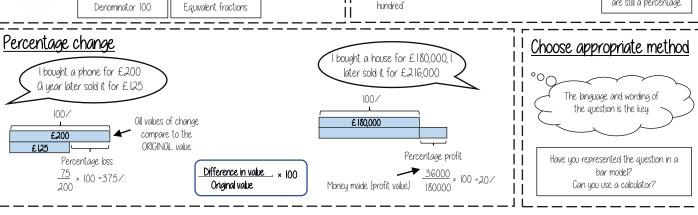
! Keywords

Percent: parts per 100 — written using the / symbol

Decimal: a number in our base 10 number system. Numbers to the right of the decimal place are called decimals. **Fraction:** a fraction represents how many parts of a whole value you have.


. Equivalent: of equal value.


Reduce: to make smaller in value.


Growth: to increase/ to grow.

Integer: whole number, can be positive, negative or zero.

Invest: use money with the goal of it increasing in value over time (usually in a bank).

YFAR 8 - DEVELOPING NUMBER

@whisto maths

Standard Form

What do I need to be able to do?

By the end of this unit you should be able to:

- Write numbers in standard form and as ordinaru numbers
- Order numbers in standard form
- Odd/ Subtract with standard from
- Multiply/ Divide with standard form
- Use a calculator with standard form

Keywords

Standard (index) Form: O sustem of writing very big or very small numbers

Commutative: an operation is commutative if changing the order does not change the result

Base: The number that gets multiplied by a power

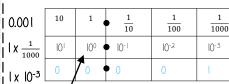
Power: The exponent — or the number that tells you how many times to use the number in multiplication.

Exponent: The power — or the number that tells you how many times to use the number in multiplication **Indices**: The power or the exponent.

Negative: a value below zero.

Positive powers of 10

l billion - 1 000 000 000


Oddition rule for indices $10^a \times 10^b = 10^{a+b}$

Subtraction rule for indices $10^a \div 10^b = 10^{a-b}$

Standard form with numbers > 1

Onu number between I and less than 10 - A x 10 n 4

Negative powers of 10

Example

3.2 x 10 4

0.8 × 10 4

Non-example

Ony value to the power O always = 1

Negative powers do not indicate negative solutions

Numbers between 0 and 1

0.054 $= 5.4 \times 10^{-2}$

= 3.2 x 10 x 10 x 10 x 10 ll = 32000

53x 10(07)

Order numbers in standard form

1000

10-3

10-2

 2.4×10^{2}

1.3 x 10-1 3.3 x 100

Look at the power first will the number be = > or < than |

0.064

 6.4×10^{-2}

240

0.13

Use a place value arid to compare the numbers for orderina

O negative power does not mean a negative answer — it means a number closer to 0

10-1

Mental calculations

6.4 x 10² x 1000 Not in Standard Form

 $6.4 \times 10^{2} \times 10^{3}$

Use addition for indices rule

= 24×10^5 Not in Standard Form 1

= $2.4 \times 10^{1} \times 10^{5}$ Use addition for

 $8x 10^5 x3$

 $= 2.4 \times 10^{6}$

indices rule.

$(2 \times 10^3) \div 4$

 $= 6.4 \times 10^{5}$

Divide the values $= (2 \div 4) \times 10^3$

 $= 0.5 \times 10^3$

Remember the layout for standard form

. Ony integer Ony number A x 10 n 4 between I and less than 10

Addition and Subtraction

Tip: Convert into ordinary numbers first and back to standard from at the end

This is not the -

final answer

6 x 105 + 8 x 105 Method I

= 600000 + 800000

= 1400000

= 1.4 x 10⁵

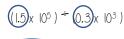
More robust method

Less room for misconceptions Easier to do calculations with negative indices Can use for different powers

Method 2

 $= (6 + 8) \times 10^{5}$

14 x 10⁵ 1.4 x 101 x 105


= 1.4 x 10⁵

Only works if the powers are the same

Multiplication and division

Division auestions can look like this

For multiplication and division you can look at the values for A and the powers of 10 as two separate calculations

 $1.5 \div 0.3$ x $10^5 \div 10^3$

Revisit addition and subtraction laws for indices they are needed for the calculations

 $= 5 \times 10^{2}$

Oddition law for indices a m x a n = a m + n

Subtraction law for indices $a^m \div a^n = a^{m-n}$

Using a calculator

 $14 \times 10^5 \times 39 \times 10^3$

Use a calculator to work out this question to a suitable degree of accuracy

hput 14 and press (x10x) Then press 5 (for the power)

Input 3.9 and press **x10**° Then press 3 (for the power) Press 🔳

This gives you the solution

Click calculator for video tutorial

To put into standard form and a suitable degree of accuracy

Press SHIFT (SETUP) and then press 7 for sci mode. Choose a degree of accuracy so in most cases press 2

Onswer: 5.5 x 108

YEAR 8 - DEVELOPING NUMBER

@whisto maths

Number Sense

What do I need to be able to do?

By the end of this unit you should be able to:

- Round numbers to powers of 10 and 1 sf
- Round numbers to any dp
- Estimate solutions
- Calculate using order of operations
- Calculate with money, units of measurement and time

Keywords

Significant: Place value of importance

Round: Making a number simpler but keeping its value close to what it was.

Decimal: Place holders after the decimal point.

Overestimate: Rounding up — gives a solution higher than the actual value **Underestimate**: Rounding down — gives a solution lower than the actual value.

Metric: a system of measurement.

Balance: The amount of money in a bank account

Deposit: Putting money into a bank account

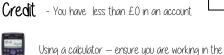
Round to powers of 10 and 1 sig. figure (370 to 1 significant figure is 400 37 to I significant figure is 40 3.7 to I significant figure is 4 5475 to the nearest 10 5495 to the nearest 1000 5475 to the nearest 100 0.37 to 1 significant figure is 0.4 5480 5000 5400 6000 0.00037 to 1 significant figure is 0.0004 Round to the first non-zero number

Round to decimal places 2.46192 Estimate the calculation Round to I significant figure to estimate **after** the decimal point "To ldp" — to one number after the decimal 4.2 + 6.7 ≈ 4. + 7 ≈ || This is an **overestimate** because the 6.7 was rounded up more "To 2dp" — to two numbers after the decimal 2.46 192 (to 1dp) - Is this closer to 24 or 25 2.4 6 192 This shows The equal sign changes to show it is an estimation the number is 2 [.4 x 3.] \approx 20 x 3 \approx 60 This is an **underestimate** because both values were rounded down closer to 25 24 It is good to check all calculations with an estimate in all aspects of maths - it 2.46 192 (to 12dp) - Is this closer to 246 or 247 2.46 192 This shows the

helps you identify calculation errors. number is closer 246 247 Calculations with money

Order of operations

Brackets Operations in brackets are calculated first


Other operations e.g. powers, roots,

Multiplication/Division They are carried out in the order from left to right in the question

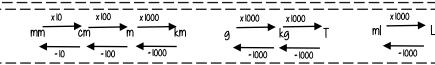
¹ Oddition/ Subtraction

They are carried out in the order from left to right in the

- You have £0 or more in an account Debit

correct units. £130 + 50p = 130 + 50 (in pence)

130 + 0.50 (in pouinds)


£1 = 100p

Money calculations are to

2dp

|Units are important:

Metric measures of lenath

Kilo = 1000 x meter

Milli - $\frac{1}{1000}$ x meter

Units of weight/capacity

Weight = a, ka, t Capacity (volume of liquid) = ml, L

Time and the calendar

sun 365 (and a quarter) days Leap Year - 366 days (every 4 years)

12 Months = one year = 52 weeks 31 days - Jan, March, May, July Oug, Oct, Dec 30 days — Opril, June, Sept, Nov 28 days — **Feb** (29 leap year)

I week - 7 days Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday

Only use hour times up to 12

Iday - 24 hours I hour - 60 minutes I minute - 60 seconds

Use a number line for time calculations!

Digital Clock (24-hour times) Use am (morning) and pm (afternoon)

0-11 (morning hours) 12-23 (afternoon hours)