YEAR 11 — EXPANDING & FACTORISING

ne end of this unit you should be able to:	MathsWatch clip	Video tutoria
• Expand & factorise with a single bracket	<u>93 134a 94</u>	
• Expand binomials	<u>134b</u>	
 Factorise quadratic expressions 		<u>Corbett</u>
• Factorise complex quadratic expressions (H)	192	<u>Corbett</u>
 Solve equations equal to 0 		
 Solve quadratic equations by factorisation 	<u>157</u>	<u>Corbett</u>
• Solve complex quadratic equations by factorisation (H)		
• Complete the square (H)	<u>209a 209b</u>	<u>Corbett</u>
• Solve quadratic equations using the quadratic formula (H)	9	Corbett

$ax^{2} + bx + c = 0$ $-\frac{b + \sqrt{b^{2} - 4ac}}{ac}$

2<mark>a</mark>

<u>Keywords</u>

Expand: multiply out terms to remove brackets

Coefficient: the number in front of a letter in an algebraic term, such as $5x^3$

Quadratic: an expression in which the highest power is 2, such as $x^2 - 5x + 3$

Cubic: an expression in which the highest power is 3, such as $8+x^3$

Estimate: read approximate values from a graph

Gradient: the steepness (or slope) of a line. A negative gradient means the line slopes downhill

Substitute: put numbers in place of letters to find the value of an expression

Reciprocal: a graph with an equation of the form $\mathbf{y} = \frac{k}{r}$ where k is a number

Roots: the solutions when an equation equals zero (often the x-intercepts of a graph)

Exponential: a graph with an equation of the form $\mathbf{y} = k^x$ where k is a number

Tangent: a straight line touching a curve which can be used to estimate the gradient of the curve at that point

Some lout not all	Completing the square: $x^{2} - 6x + 5$ $\Rightarrow (x - 3)^{2} - 3^{2} + 5$ $\Rightarrow (x - 3)^{2} - 9 + 5$ $\Rightarrow (x - 3)^{2} - 4$	$ \begin{array}{c} 0 = 2 \\ 2x^2 - 8x - 24 = 0 \\ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(2)}}{2(2)} \end{array} $	Solving a quadratic by using the quadratic formula The quadratic formula
(2x-1)(x-3) 2x-1=0 o 2x = 1	3 = 0 3 = 0 Factorise 3 = 0 Factorise 3 = 0 Factorise 3 = 0 Factorise Factorise Factorise	$x = \frac{8 \pm \sqrt{64 - (-192)}}{4}$ $x = \frac{8 \pm \sqrt{256}}{4}$ $x = \frac{8 \pm 16}{4} = 2 \pm 4$ $x = 6, -2$ Solutions (often these r	nay be decimals)

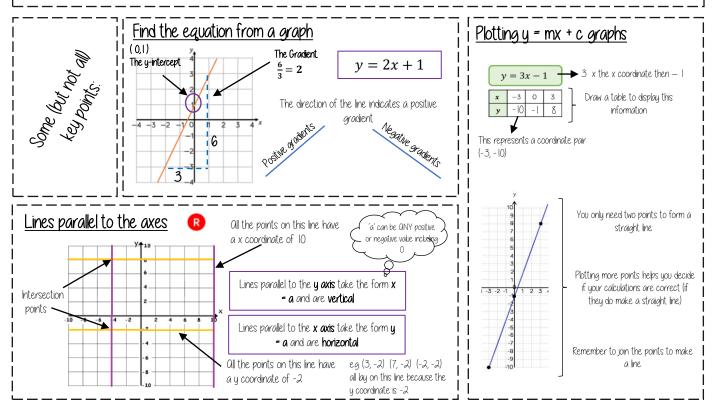
YEAR 11 — GRADIENTS & LINES

By the end of this unit you should be able to:	MathsWatch clip	Video tutorial
 Find equations of lines parallel to the axis 	<u>05</u>	
 Plot straight lines 	<u>96</u>	
 Interpret y = mx + c 		<u>Corbett</u>
 Find the equation of a straight line: 		
• i) from a graph	<u>159a</u>	<u>Corbett</u>
• ii) given one point and a gradient	<u>1596</u>	
• iii) given two points	<u>159b</u>	<u>Corbett</u>
 Determine whether a point is on a line 		
 Solve linear simultaneous equations graphically 	<u>140</u>	<u>MathsGenie</u>
• Recognise when straight lines are perpendicular (H)	208	
 Find the equations of perpendicular lines (H) 	208	MathsGenie

<u>Keywords</u>

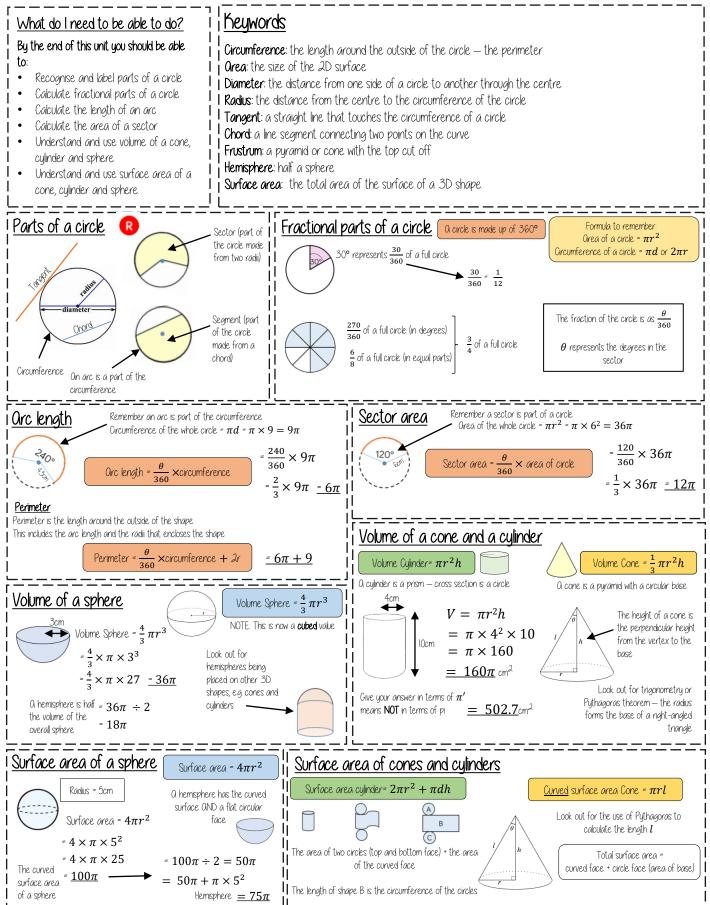
Parallel: straight lines that never meet (equal gradients)

Horizontal: a straight line which goes from side to side, parallel to the x-axis

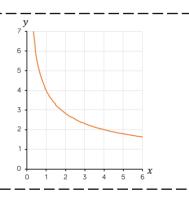

Vertical: a straight line which goes up and down, parallel to the y-axis

Intercept: the point where a line crosses the axis of a graph

Gradient: the steepness (or slope) of a line. A negative gradient means the line slopes downhill


Substitute: put numbers in place of letters to find the value of an expression

Reciprocal: the reciprocal of a number is I divided by that number.


YEAR 11 — WORKING IN DIFFERENT DIMENSIONS...

@whisto_maths

YEAR 11 — MULTIPLICATIVE REASONING

the end of this unit you should be able to:	MathsWatch clip	Video tutorial
• Use scale factors		
 Understand direct proportion 		
Construct complex direct proportion equations (H)	199	<u>Corbett</u>
• Calculate with pressure & density	142	Corbett Corbett
 Understand inverse proportion 		
 Construct inverse proportion equations (H) 	<u>199</u>	<u>Corbett</u>
• Solve ratio problems		
 Calculate with speed, distance and time 		
• Use area and volume scale factors in similar shapes		



<u>Keywords</u>

Similar: same shape and angles, but a different size Direct proportion: two quantities which remain in the same ratio at all times Inverse proportion: a relationship in which one quantity increases as the other decreases Linear: a direct proportion relationship — shown by a straight diagonal line on a graph Varies directly: another was of saying 'direct proportion' Constant of proportionality: the ratio between two quantities that are in proportion Density: how much matter is in a particular volume of space, calculated as mass + volume

Density. Now much matter is in a particular volume of space, calculated as mass = volume

Pressure: the effect of an object's weight on a surface, calculated as force + area

