YEAR 10 - SPRING TERM.

@uhisto_maths

I What do I need to be able to do?
By the end of this unit you should be able to:

- Determine unether $(x, y) /$ a soltion
- Solve by substituting a known variable
- Solve by substituting an expression
- Solve graphically
- Solve by subtracting/ adding equations
- Solve by adjusting equations
- Form and solve linear simutaneous

Keywords

Soltion: a value we can put in place of a variable that makes the equation true
I Variable: a symbol for a number we don't know yet
I Equation: an equation says that two things are equal - it will have an equals sign =
I Substitute: replace a variable with a numerical value
I LCM: lowest common multiple (the first time the times table of two or more numbers match)
I Eliminate: to remove
Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equal sign) Coordinate: a set of values that show an exact position
I Intersection: the point two lines cross or meet.

Is (x, y) a solution? x and y represent values that can be substituted into an equation

Substituting known varabables.
Stephanie knows the point $x=4$ les on that line Find the value for y
a line has the equation $3 x+y=14$
$3 x+y=14$

$3(4)+y=14$

Two different variables, two solutions
$x=4$
$12+y=14$
-12
$y=2$
$x=2 y$

10	10
x	

$x=20$

$x=2$
$y=5$

Solve by subtraction
Pair of simuttaneous equations
(two representations)

Vart 10 - SPRMG texne...

@whisto maths

What do I need to be able to do?
By the end of this unit you should be able to:

- Compare quantities using ratio
comparisons
- Share in a given ratio
- Link Ratio and scales and grablems with currency conversions
- Solve best buy' problems
- Combine ratios

Keywords

Ratio: a statement of how two numbers compare
Equivalent: of equal value
I | Proportion: a statement that links two ratios
I Integer: whole number, can be positive, negative or zero.
I Fraction: represents how many parts of a whole.
Denominator: the number below the line on a fraction. The number represent the total number of parts.
Numerator: the number above the line on a fraction. The top number. Represents how many parts are taken
Origin: $(0,0)$ on a graph. The point the two axes cross
Gradient: The steepness of a line

YEAR 10 －SPRING TERM
＠whisto＿maths

Percentages and Interest

What do I need to be able to do？
By the end of this unit you should be able to：
－Convert and compare FDP
－Work out percentages of amounts
－Exprease／decrease by a given percentage number as a percentage
－Calculate simple and compound interest
－Calculate repeated percentage change
．Sind the original value problems with growth and decay
－ニニニニニニニニニニニニニニ

Keywords

Exponent：how many times we use a number in multipication It is written as a power
Compound interest：calculating interest on both the amount pus previous interest
I Depreciation：a decrease in the value of something over time．
I Growth：where a value increases in proportion to its current value such as doubing
I Decay：the process of reducing an amount by a consistent percentage rate over time
Mutipier：the number yov are mutliplying by
Equivalent：of equal value．

Percentage increase／decrease R

$100 \%-58 \%=42 \%$
$100-0.58=0.42 \longleftarrow$ Less than 1
Simple and compound interest

Compound interest
Tess invests
£ 100 at 10%
compound
interest for 3
years

Depreciation
Depreciation calcuations use multiplers less than
\square
ニニニニニニニニ
Growth and decay

I Compound growth Compound decay

Compound growth and compound decay are exponential graphs

Decay－the values get closer to 0 The constant mutipilier is less than one

Growth－the values increase exponentially The constant muttiplier is more than one

II Express as a percentage

Original \times Mutipier $=$Final Vamount

In a test Lucy scored 60% of her questions correctly Her score was 24．How many questions were on the test

$24 \div 0.6=40$ marks
 $100 \%=40$
a car sold for a proft $£ 3000$ with a proft of 20% How much was the car orignally？

YEAR 10 - SPRING TERM

Collecting representing and interpreting data

@whisto_maths

Keywords

Popuation: the whole group that is being studied

Sample: a selection taken from the population that will let you find out information about the larger group
Representative: a sample group that accurately represents the population
Random sample: a group completely chosen by change No predictabilty to who it will incude.
Bias: a buit-in error that makes all values wrong by a certain amount
Primary data: data collected from an original source for a purpose.
Secondary data: data taken from an external location Not collected directly I, Outier: a vave that stanos apart from the data set

Stem and leaf a nay to erepesent dida and ve to find wereages

This stem and leaf diagram shows the age of people in a line at the supermarket.

\section*{1 Draw and interpret a scatter graph
 | Age of Car (Years) | 2 | 4 | 6 | 8 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Value of Car (£s) | 7500 | 6250 | 4000 | 3500 | 2500 |}

1. This data may not be given in size order

- The data forms information pairs for the scatter graph

The Line of best fit is used to make estimates about the information in your scatter graph

Things to know

The line of best fit DOES NOT need to go through the origin (The point the axes cross)

- There should be approximately the same number of points above and below the ine It may not go through any points)
- The line extends across the whole graph

It is only an estimate
because the line is
designed to be an average
representation of the data
It is aways a straight line.

Using a ine of best fit ©

Interpolation is using the line of best fit to estimate values inside our data point.
eg 40 hours revising predicts a percentage of 45 .

Extrapolation is where we use our line of best fit to predict information outside of our data **This is not always useful - in this example you cannot score more that 100% So revising for longer can not be estimated**

This point is an "outier"

It is an outlier because it doesn't fit this model and stands apart from the data

YEAR 10 －SPRINg TERM
 Collecting representing and interpreting data

 ＠whisto mathsWhat do I need to be able to do？
1．Construct and interpret frequineny tables
I and polygon tho－Way tables，me，bar，\＆pie I charts
1．Find and interpret averages from a list and

atabe

－Construct and interpret time series graphs， stem and leaf diagrams and scatter graphs

Keywords

Population：the whole group that is being studied
I Sample：a selection taken from the population that will let you find out information about the larger group
Representative：a sample group that accurately represents the population
I Random sample：a group completely chosen by change．No predictability to who it will include．
Bias：a builtin error that makes all values wrong by a certain amount
Primary data data collected from an original source for a purpose．
Secondary data：data taken from an external location Not collected directly I，Outlier：a value that stands apart from the data set

I Frequency tables and polygons

I The data in a list： $0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2$

Mean：total number of siblings

 Total frequencyI Groped data

x Weight（g）	Frequency	Mid Point	MP \times Freq
$40<x \leq 50$	1	45	45
$50<x \leq 60$	3	65	195
	$60<x \leq 70$	5	65

The data in a list $45,55,55,55,65,65,65,65,65$

Overall Frequency： 9 Overall Total： 565 Mean： 62.8 g

[^0]

Find the sum of the data（add the values） 55
Divide the overall total by how many pieces of data you have
$55 \div 5$
Mean＝ 11

Mode $=8$

Put the data in order $\quad 4,8,8,11,24$
Find the value in the middle $4,8,8,11,24$
Median $=8$

NOTE：If there is no single middle value find the mean of the two

For Grouped Data
The modal group－which group has the highest frequency

Types of number ε sequences

@whisto maths

Keywords
 Factor: numbers we multiply together to make another number

Mutiple: the result of muttiplying a number by an integer.
HCF: highest common factor. The biggest factor that numbers share.
LCM: lowest common multiple. The first mutiple numbers share
arithmetic: a sequence where the difference between the terms is constant
Geometric: a sequence where each term is found by mutipling the previous one by a fixed nonzero number
I Sequence: tems or numbers put in a pre-decided order

By the end of this unit you should be able to:

- Understand factors and multiples
- Express numbers as a product of primes
- Find the HCF and LCM
- Describe and continue sequences
- Explore sequences
- Find the nth term of a linear sequence

Mutiples The "times table" of a given number all the numbers in this lists below are mutiples of 3
$3,6,9,12,15 \ldots$
Ths st continese and desest
end

I arithmetic/Geometric sequences

arithmetic Sequences change by a common difference. This is found by addition or subtraction between terms

Geometric Sequences change by a common ratio. This I is found my mutipication/division between terms.

Term to term rule - how you get from one term (number in the sequence) to the next term

Position to term rule - take the rule and substitute in a postion to find a term Eg. Mutiply the position number by 3 and then add 2

$\\|$
$\\|$
$\\|$
$\\|$

```
eg60 30\times2 2 < 3 < 5 <2
    150 30\times5 2 <3\times5\times5
```

iI Finding the nth term
 between the terms in the sequence

This is the comparison (difference)

[^0]: 11 D

