Vatar

Deduction

What do I need to be able to do?

Keywords

Paralle: two straight lines that never meet with the same gradient
By the end of this unit you should be able to:

- Identify angles in parallel ines
- Solve angle problems
- Make coniectures with angles
- Make conjectures with shapes

Perpendicular: two straight lines that meet at 90°
Transversal: a line that crosses at least two other lines.
Sum: the result of adding two or more numbers.
Conjecture: a statement that might be true but is not proven
II Equation: a statement that says two things are equal
I Polygon: a 2 D shape made from straight edges.
Counterexample: an example that disproves a statement

YEAR 9

Probability

What do I need to be able	Keywords
to do?	
	Probability: the chance that something will happen
By the end of this unit you should be able to:	I Relative Frequency: how often something happens divided by the outcomes
- Find single event probability	I Independent: an event that is not effected by any other events.
- Find relative frequency	I Chance: the likelihood of a particular outcome.
- Find expected outcomes	I Event the outcome of a probabilty - a set of possible outcomes
- Find independent events	I Event: the outcome of a probability - a set of possible outcomes.
- Use diagrams to work out probabilities	Biased: a built in error that makes all values wrong by a certain amount.
- - -	

The sum of the probabilites is 1

independent events

The rolling of one dice has no impact on the rolling of the other. The individual probabilities should be calculated separately.

Probability of event $1 \times$ Probability of event 2
$\because \because O$
$P(5)=\frac{1}{6}$
$P(R)=\frac{1}{4}$
| Find the probability
of getting a 5 and $P(5$ and $R)=\frac{1}{6} \times \frac{1}{4}=\frac{1}{24}$

YEAR 9

What co I need to be able to do?

I By the end of this unit you should be able to:
I- Solve speed, distance, time questions

- Use distance time graphs
- Solve density mass, volume problems
- Solve flow problems
- Use flow graphs
- interpret rates of change and their units

Keywords

Convert: change

Mass: a measure of how much matter is in an object. Commonly measured by weight
Origin: the coordinate (0,0)
Volume: the amount of 3D space a shape takes up
Substitute: putting numbers where letters are - replacing numbers into a formula
Speed, Distance, Time
"per" for every
eg 80 miles per hour (mph)
Travel 80 miles every hour
You can use a double number line to help you calculate distance
eg a boat travels at a constant speed for 2.5 hours It travels 300 miles.

300 miles

Density, Mass, Volume

$$
\text { density }=\frac{\text { mass }}{\text { volume }} \quad \text { volume }=\frac{\text { mass }}{\text { density }}
$$

$$
\text { mass }=\text { volume } \times \text { density }
$$

volume of prism $=\begin{gathered}\text { area of cross } \\ \text { section }\end{gathered} \times$ Depth
R

Speed, Distance, Time

Before calcuations - make sure you are working in the same units as the speed

Learn or leam how to rearrange the formular for speed, distance and time

Substitute in the varables given

distance $=$ speed \times time

YEAR 9

Algebraic Representation

