YEAR 8
 angles in parallel lines and polygons

\section*{What to do medea to be able
 to do?
 By the end of this unit you should be able to:
 - Identify alternate angles
 - Identify corresponding angles
 - densify co-interior angles
 - Find the sum of interior angles in polygons
 - Find the sum of exterior angles in polygons
 - Find interior angles in regular polygons
 I Keywords
 I Parallel Straight lines that never meet
 angle: The figure formed by two straight lines meeting (measured in degrees)
 Transversal: a line that cuts across two or more other (normally parallel I ines
 I losceles: Two equal size lines and equal size angles (in a triangle or trapezium)
 I Polygon: a 2 D shape made with straight lines
 I Sum: Addition (total of all the interior angles added together)
 I Regular polygon: all the sides have equal length, all the interior angles have equal size.
 Co-interior angles

 Still remember to look for angles on straight ines, around a point and Lines $A F$ and $B E$ are transversal vertically oppostell
 This notation identifies parallel lines | alternate angles |
| :--- |
| often identified by |
| their "Z shape" in |
| position |
 I attemate/ Corresponding angles
 Because alternate angles are equal the highlighted angles are the same size
 Because corresponding angles are equal the highlighted angles are the same size

 Paralilines}

Properties of Quadrilaterals

This is an irregular polygon

- the sides and angles are different sizes

YEAR 8

area of trapezia and Circles

I Blhlattdo hroelead to be able to do?

By the end of this unit you should be able to:

- Recall area of basic $2 D$ shapes
- Find the area of a trapezium
- Find the area of a circle
- Find the area of compound shapes
- Find the perimeter of compound shapes

Keywords

I Congruent: The same
area: Space inside a 2D object
Perimeter: Length around the outside of a 2 D object
$\mathrm{Pi}(\boldsymbol{\pi})$:The ratio of a circle's circumference to its diameter.
Perpendicular: at an angle of 90° to a given surface
Formula: a mathematical relationship/rule given in symbols. Eg $b \times h=$ area of rectangle/ square
Infinity (∞): A number without a given ending (too great to count to the end of the number) - never ends I Sector: a part of the circle enclosed by two radii and an arc.
L_______________-_,

area - rectangles, triangles, parallelograms R

Orea of a trapezum $(a+b) \times h$. 2
Why?

- Two congruent trapeziums make a parallelogram
- New length $(a+b) \times$ height
- Divide by 2 to find area of one
area of a circle $\pi \times$ radius 2

$\pi \times$ radius 2
$=\pi \times 4^{2}$
$=\pi \times 16$
$=16 \pi \mathrm{~cm}^{2}$

area of a circle (Calculator)

Find the area of one quarter of the circle
Diameter $=8 \mathrm{~cm}$
\therefore Radius $=4 \mathrm{~cm}$
area of a circle $\pi \times$ radius 2

How to get $\boldsymbol{\pi}$ symbol on the calculator

It is important to round your answer suitably - to significant figures or decimal places. This will give you a decimal solution that will go on forever!

Compound shapes

To find the area compound shapes often need spiliting into more manageable shapes first. Identify the shapes and missing sides etc. first

Shape $A+$ Shape $B=$ total area
$\underline{(5+7) \times 4}+\underline{(5+8) \times 7}=24+45.5=69.5 \mathrm{~cm}^{2}$

Compound shapes including circles

 $\boldsymbol{\pi} \times$ diameter
\longleftarrow For Perimeter you will need to use the circumference

Spotting diameters and radii

$\operatorname{arclength}=\pi \times 64$ $=64 \pi$

arc lengths + Straight lengths $=$ total perimeter
$=64 \pi+150+150$
$=(300+64 \pi) \mathrm{m}$
$O R=\underline{501.1 \mathrm{~m}}$

Still remember to spit up the compound shape into smaller more manageable individual shapes first

YEAR 8

The data handling cycle

Measures of location

I The Mean
I a measure of average to find the central tendency...
I a typical value that represents the data

24, 8, 4, II, 8 ,

Find the sum of the data (add the values) 55
I Divide the overall total by how many $55 \div 5$
I pieces of data you have
Mean $=11$

The Median

The value in the center (in the middle) of the data
24, 8, 4, 11, 8,
Put the data in order
$4,8,8,11,24$
Find the value in the middle $4,8,8,11,24$
Median $=8$
NOTE: If there is no single midde value find the mean of the two

The Mode (The modal value)

This is the number OR the item that occurs the most it does not have to be numerical

$24,8,4,11,8$

 numbers left
I Choosing the appropriate average

The average should be a representative of the data set - so it should be compared to the set as a whole - to check if it is an appropriate average

Which average best represents the weekly wage?

dentify outiers

Outiers are values that stand well apart from the rest of the data

I Outliers can have a big impact on range and mean

Where an outlier is dentified try to give it some context. This is likely to be a taller member of the group. Could the be an older student or a teacher?

Comparing distributions

Comparisons should include a statement of average and central tendency, as well as a statement about spread and consistency.

Here are the number of runs scored last month by Lucy and James in cricket matches
Lucy: $45,32,37,41,48,35$ James: $\quad 60,90,41,23,14,23$

Lucy
Mean: 39.6 (ldp), Median: 38 . Mode: no mode, Range: 16 James
Mean: 418 ((dp), Median: 32, Mode: 23, Range: 76 have a big impact on
"James is less consistent that Lucy because his scores have a greater range. Lucy performed better on average because her scores have a similar mean and a higher median"

