Constructing measuring

@whisto maths

What do I need to be able to do?

By the end of this unit you should be able to:

- Use letter and labelling conventions
- Draw and measure line segments and angles
- Identify parallel and perpendicular lines
- Recognise types of triangle
- Recognise types of quadrilateral
- Identify polygons
- Construct triangles (SQS, SSS, QSQ)
- Draw Pie charts

Keuwords

Polygon — 0 2D shape made with straight lines

Scalene triangle — a triangle with all different sides and angles

Isosceles triangle — a triangle with two angles the same size and two angles the same size

Right-angled triangle — a triangle with a right angle Frequency — the number of times a data value occurs

Sector — part of a circle made by two radii touching the centre

Rotation — turn in a given direction

Protractor — equipment used to measure angles

Compass — equipment used to draw arcs and circles.

The letter in the middle is the angle The arc represents the angle

Onale Notation: three letters ABC

This is the angle at B = 113°

Line Notation: two letters EC

The line that joins E to C

I Draw Pie Charts

Parallel and Perpendicular lines

Parallel lines

Straight lines that never meet (Have the same gradient)

Perpendicular lines

Straight lines that meet at 90°

Ongles over 180°

Use your knowledge of straight lines 180° and angles around a point

SOS, SSS, OSO constructions

Properties of Quadrilaterals

=========

<u>Parallelogram</u>

Opposite sides are parallel Opposite angles are equal Co-interior angles

One pair of parallel lines

<u>Kite</u>

Equal lengths on top sides **I** Equal lengths on bottom sides

Side, Ongle, Side This is 192°

Side. Side. Side

Side, Ongle, Ongle

Rhombus

Rectangle

Oll angles 90°

Oll sides equal size Opposite angles are equal

Opposite sides are parallel

No parallel lines

One pair of equal angles

<u>32</u> x 360 = 192°

- Quadrilateral

- Triangle
- Pentagon - Hexagon
- Octagon - Nonagon - Heptagon - Decagon

If all the sides and angles are the same, it is a regular polygon

@whisto maths

Geometric reasoning

What do I need to be able to do?

By the end of this unit you should be able to:

- Understand/use the sum of angles at a point
- Understand/use the sum of angles on a straight line.
- Understand/use equality of vertically opposite anales
- Know and apply the sum of angles in a triangle
- Know and apply the sum of angles in a quadrilateral

Keywords

Vertically Opposite: angles formed when two or more straight lines cross at a point.

Interior Ongles: angles inside the shape

Sum: total, add all the interior angles together

Convex Quadrilateral: a four-sided polygon where every interior angle is less than 180°

Concave Quadrilateral: a four-sided polygon where one interior angle exceeds 180°

Polygon: 0 2D shape made with straight lines

Scalene triangle: a triangle with all different sides and angles

isosceles triangle: a triangle with two angles the same size and two angles the same size

I | Right-angled triangle: a triangle with a right angle

Split up the problem into chunks and explain your reasoning at each point using angle notation

l Ongle DEF = $5\,\mathrm{l}^\circ$ because it is a vertically opposite angle DEF = GEH

Interior angles are those that make up

the perimeter (outline) of the shape

2. Triangle DEF is isosceles (triangle notation) :: EDF = EFD and the sum of interior angles is 180°

a quadrilateral is made up of two

triangles = the sum of interior angles is

the same as two triangles: 180° + 180° = 360°

Keep working out clear and notes together

 $|80^{\circ} - 5|^{\circ} = |29^{\circ}|$ $|29^{\circ} \div 2 = 645^{\circ}|$

3. Ongle EDF = 64.5°

number sense

What do I need to be able to do?

By the end of this unit you should be able to:

- Know and use mental addition/subtraction
- Know and use mental multiplication/division
- Know and use mental arithmetic for decimals
- Know and use mental arithmetic for fractions
- Use factors to simplify calculations
- Use estimation to check mental calculations
- Use number facts
- Use algebraic facts

Keywords

Commutative: changing the order of the operations does not change the result

Ossociative: when you add or multiply you can do so regardless of how the numbers are grouped

Dividend: the number being divided

Divisor: the number we divide by.

Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign

Equation: a mathematical statement that two things are equal

Quotient: the result of a division

Mental methods for addition/subtraction

Oddition is commutative

Subtraction the order has to stay the same 11 Multiplication is commutative

The order of addition does not change the result

360 - 147 = 360 - 100 - 40 - 7

- Number lines help for addition and subtraction
- Working in 10's first aids mental addition/subtraction

¦¦Mental methods for multiplication∕ division

 $2 \times 4 = 4 \times 2$

The order of multiplication does not change the result

Partitioning can help multiplication

$$24 \times 6 = 20 \times 6 + 4 \times 6$$

= $120 + 24$

= |44

Division is not associative

Chunking the division can help $4000 \div 25$ "How many 25's in 100" then how many chunks of that in 4000.

Mental methods for decimals

Multiplying by a decimal < I will make the original value smaller e.g x 0.1 = + 10

Methods for multiplication 12 x 0.03

 $12 \times 3 = 36$ $1.2 \times 3 = 3.6$ $1.2 \times 0.3 = 0.36$ $1.2 \times 0.03 = 0.036$

÷ 10 ÷ 100 ÷ 1000 $1.2 \times 0.03 = 0.036$

Methods for addition 23+24

0.3 + 0.4 = 0.74 + 0.7 = 4.7

Methods for division $15 \div 0.05$

Multiply by powers of 10 until the divisor becomes an integer

1.5 ÷ 0.05 ×100

Mental methods for fractions

Use bar models where possible

What is $\frac{5}{3}$ of £ 15?

Using factors to simplify calculations

30 x 16

10 x 3 x 4 x 4

2x5x3x2x2x2x2

10 x 3 x 2 x 8 16 x 10 x 3

Multiplication is commutative Factors can be multiplied in any order

Estimation

Estimations are useful — especially when using fractions and decimals to check if your solution is possible.

Most estimations round to I significant figure

Estimations are useful — especially when using fractions and decimals to check if your solution is possible.

210 + 899 < 1200

This is true because even if both numbers were rounded up, they would reach 300 + 900

> The correct estimation would be 200 + 900 = 1100.

Number facts

124 x 5 = 620

For multiplication, each value that is multiplied or divided by powers of 10 needs to happen to the result

620÷ 124 = 50

For division you must consider the impact of the divisor becoming smaller or bigger. Smaller — the answer will be bigger (It is being shared into less parts) Bigger — the answer will be smaller (It is being shared into more parts)

¦i Olgebraic facts

The unknown quantity isn't changing but the variables change what is done to

give the result

a + b + 2 = 7

Odd 2 to the total

Sets and probability

What do I need to be able to do?

By the end of this unit you should be able to:

- Identify and represent sets
- Interpret and create Venn diagrams
- Understand and use the intersection of sets
- Understand and use the union of sets
- Generate sample spaces for single events
- Calculate the probability of a single event
- Understand and use the probability scale

Keuwords

Set: collection of things

Element: each item in a set is called an element

Intersection: the overlapping part of a Venn diagram (QND \cap)

Union: two ellipses that join (OR U)

Mutually Exclusive: events that do not occur at the same time

Probability: likelihood of an event happening

Bias: a built-in error that makes all values wrong (unequal) by a certain amount, e.g. a weighted dice

Fair: there is zero bias, and all outcomes have an equal likelihood

Random: something happens by chance and is unable to be predicted.

ldentify and represent sets

The **universal set** has this symbol ξ — this means EVERYTHING in the Venn diagram is in this set

a set is a collection of things — you write sets inside curly brackets { }

= {the numbers between I and 50 inclusive}

My sets can include every number between and 50 including those numbers

A = {Square numbers}

A = {1, 4, 9, 16, 25, 36, 49}

Oll the numbers in set A are square number and between Land 50

Interpret and create Venn diagrams

Oll of set B is also in Set O so the ellipse fits inside the set.

Oround the outside of every Venn diagram will be a box. If an element is not part of any set it is placed outside an ellipse but inside the box

Intersection of sets

Elements in the intersection are in set **A** QND set B

The notation for this is $A \cap B$

 ξ = {the numbers between | and | 15 inclusive}

 $A = \{\text{Multiples of 5}\}$ $B = \{\text{Multiples of } 3\}$

The element in $A \cap B$ is 15

In this example there is only one number that is both a multiple of 3 and a multiple of 5 between 1 and 15

Jnion of sets

Elements in the union could be in set $oldsymbol{A}$ OR set

> Probability notation

 ξ = {the numbers between 1 and 15 inclusive} $A = \{\text{Multiples of 5}\}$ $B = \{\text{Multiples of 3}\}$

The elements in $A \cup B$ are 5, 10, 15, 3, 9, 6, 12

There are 7 elements that are either a multiple of 5 OR a multiple of 3 between 1 and 15

a sample space for rolling a six-sided dice is S={1,23,4,5,6}

- O Sample space represents a possible outcome from an event
- They can be interpreted in a variety of ways because they do not tell you the probability

Probability = <u>number of times event happens</u> total number of possible outcomes

There are 10 sectors

Probability of a single event

yellow balls, so

they have the

same probability

P (event) Probability can be a fraction, decimal or percentage

= 40 = ()4() = 4()/

Probability is always a value between 0 and 1

The probability scale

The more likely an event the further up the probability it will be in comparison to another event

interval value is $\frac{1}{5}$

11 Sum of probabilities

You only need to write each element

once in a sample space diagram

Probability is always a value between 0 and 1

The probability of getting a blue ball is 🕺 :The probability of **NOT** getting a blue ball is $\frac{4}{5}$

The sum of the probabilities is I

The table shows the probability of selecting a type of chocolate

Dark	Milk	White
0.15	0.35	

P(white chocolate) = 1 - 0.15 - 0.35

Prime numbers and Proof

HCF = 6

Multiplication

part-whole

models

What do I need to be able to do?

By the end of this unit you should be able to:

- Find and use multiples
- Identify factors of numbers and expressions
- Recognise and identify prime numbers
- Recognise square and triangular numbers
- Find common factors including HCF
- Find common multiples including LCM

Keywords

Multiples: found by multiplying any number by positive integers

Factor: integers that multiply together to get another number.

Prime: an integer with only 2 factors.

Conjecture: a statement that might be true (based on reasoning) but is not proven.

Counterexample: a special tupe of example that disproves a statement.

Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)

Product of prime factors

150

 30×5

 $2 \times 3 \times 5 \times 5$

I HCF: highest common factor (biggest factor two or more numbers share)

I LCM: lowest common multiple (the first time the times table of two or more numbers match)

Conjectures and counterexamples All three prime factor trees represent the same decomposition Conjecture Counterexamples Multiplication is commutative $30 = 2 \times 3 \times 5$ This sequence isn't doubling it Multiplication of prime factors is adding 2 each time are doubling each time Using prime factors for predictions a pattern that is Only **one** counterexample noticed for many is needed to disprove a e.a 60 30 x 2 2 x 3 x 5 x 2 cases

conjecture