## YEAR 7

## Constructing measuring

 ＠whisto＿maths

Classify angles
$\frac{\text { acute angles }}{0^{\circ}<\text { angle }<90^{\circ}}$

$\frac{\text { Obtuse }}{90^{\circ}<\text { angle }<180^{\circ}}$| $\frac{\text { Right angles }}{90^{\circ}}$ |
| :--- |
| Right angle <br> notation |
| $180^{\circ}<$ angle $<360^{\circ}$ |$\frac{\text { Straight Line }}{180^{\circ}}$

Measure angles to $180^{\circ}$

=ニニニニニニニニーニニーニー」


Draw angles up to $180^{\circ}$

of the line wheress is a the en
1 of the
I angle）

## angles over $180^{\circ}$

Use your knowledge of straight lines $180^{\circ}$ and angles around a point

$360^{\circ}$

Parallel and Perpendicular lines
Parallel lines
Straight lines that never meet
（Have the same gradient）

II Draw Pie Charts

Square
all sides equal size
all angles $90^{\circ}$

Opposite sides are parallel

## Rectangle

 all angles $90^{\circ}$ Opposite sides are parallelRhombus<br>all sides equal size Opposite angles are equal



This fraction of the 360 degrees represents dogs
$\frac{32}{60} \times 360=192^{\circ}$


## $\frac{\text { Kite }}{\text { No parallel lines }}$

 Equal lengths on top sides Polygons

| Equal length on bottom |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equal lengths on botta sides | 3 |  | 5 | －Pentagon | 8 | －Octagon | are the same，it is a regular |
| One pair of equal angles | 4 | －Ouadrilateral | 6 | －Hexagon | 9 | －Nonagon | polygon |

## year 7

## Geometric reasoning

## What do I need to be able to do?

By the end of this unit you should be able to:

- Understand/use the sum of angles at a point
- Understand/use the sum of angles on a straight line
- Understand/use equality of vertically opposite angles
Know and apply the sum of angles in a triangle
know and apply the sum of angles in a quadrilateral

Keywords
Vertically Opposite: angles formed when two or more straight ines cross at a point
Interior angles: angles inside the shape
Sum: total, add all the interior angles together
Convex Quadrilateral a four-sided polygon where every interior angle is less than $180^{\circ}$
Concave Quadriatera: a four-sided polygon where one interior angle exceeds $180^{\circ}$
I Polygon: a 2 D shape made with straight lines
I Scalene triangle: a triangle with all different sides and angles
I I sosceles triangle: a triangle with two angles the same size and two angles the same size
II Right-angled triangle: a triange with a right angle

## Sum of angles at a point <br> The sum of angles around a point is $360^{\circ}$



Vertically opposite angles

Other angle rules still apply
Look for straight line sums and angles around a point.

Form equations with information from diagrams:
$2 x-12=42$
$2 x=54$


around a point.

$x=27^{\circ}$

Find angle BOE $90^{\circ}+33^{\circ}+92^{\circ}=205^{\circ}$ $360^{\circ}-205^{\circ}$ $B O E=155^{\circ}$ angle notation - find this missing angle


I Sum of angles on a straight line
adiacent angles that share a common point on a line add up to $180^{\circ}$

II Sum of angles in triangles
 same size

The two base angles will be the
a triangle can only have
ONE right

Sum of interior angles in a triangle $=180^{\circ}$

Sum of angles in quadriaterals


Convex Quadilateral


Concave
Quadilateral


Have a gol
Tearing the comers from triangles forms a straight ine which is therefore $180^{\circ}$

Interior angles are those that make up the perimeter (outine) of the shape

Sum of interior angles in a quadribteral $=360^{\circ}$

angle Problems Split up the problem into chunks and explain your reasoning at each point using angle notation


1. angle $D E F=51^{\circ}$ because it is a vertically opposite angle $D E F=G E H$

Keep working out clear and notes together
2. Triangle DEF is isosceles (triangle notation) $\therefore E D F=E F D$ and the sum of interior angles is $180^{\circ}$
$180^{\circ}-51^{\circ}=129^{\circ} \quad 129^{\circ} \div 2=64.5^{\circ}$
3. angle $E D F=645^{\circ}$

## YEAR 7

## number sense

## What do I need to be able to do? <br> By the end of this unit you should be able to: <br> - Know and use mental adation/ subtraction <br> - Know and use mental multipication/ division <br> - Know and use mental arithmetic for decimals <br> - Know and use mental arithmetic for fractions <br> - Use factors to simplify calculations <br> - Use estimation to check mental calculations <br> - Use number facts <br> - Use algebraic facts

## Keywords

II
I Commutative: changing the order of the operations does not change the result
I associative: when you add or multipy you can do so regardless of how the numbers are grouped
I Dividend: the number being divided
I Divisor: the number we divide by
I Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign
Equation: a mathematical statement that two things are equal
Quotient: the result of a division

## Mental methods for addition/subtraction

Subtraction the order has to stay the same

INental methoos for mulipication divison
$360-147=360-100-40-7$

- Number lines help for addition and subtraction
- Working in 10 's first aids mental addition/ subtraction

Mutipication is commutative ||


Mental methods for decimals
I Muttiplying by a decimal <1 will make the original value smaller eg $\times 0.1=\div 10$

Methods for multipication $12 \times 0.03$

$$
\begin{gathered}
2+2=4 \\
0.3+0.4=0.7 \\
4+0.7=4.7
\end{gathered}
$$



Methods for division $15 \div 005$ Mutiply by powers of 10 until the divisor becomes an integer

## Mental methows for fractions Usebur woese wee nexselt

Partitioning can help muttiplication $24 \times 6=20 \times 6+4 \times 6$
$=120+24$
$=\underline{144}$
Division is not associative
Chunking the division can help $4000 \div 25$ "How many 25's in 100 " then how many chunks of that in 4000 .

> The order of mutipication does not change the result

£2lleft
II How much did they have to begin with?




$$
\text { What is } \frac{5}{3} \text { of } £ 15 ?
$$



| Using factors to simplify calculations | $10 \times 3 \times 4 \times 4$ | $10 \times 3 \times 2 \times 8$ | Muttiplication is commutative |
| :---: | :---: | :---: | :---: |
| $30 \times 16$ | $2 \times 5 \times 3 \times 2 \times 2 \times 2 \times 2$ | $16 \times 10 \times 3$ | Factors can be mutiplied in any order |

## Estimation

Estimations are useful - especially when using fractions and decimals to check if your solution is possible.

Most estimations round to I significant figure

Estimations are useful - especially when using fractions and decimals to check if your solution is possible.
$210+899<1200$

This is true because even if both numbers were rounded up, they would reach $300+900$
The correct estimation would be
$200+900=1100$.

Nimber facts
Use $\quad 124 \times 5=620$
For mutipication, each value that is mutiplied or divided by powers of 10 needs to happen to the result

$$
620 \div 12.4=50
$$

For division you must consider the impact of the divisor becoming smaller or bigger. Smaller - the answer will be bigger (tt is being shared into less parts) Bigger - the answer will be smaller (t is being shared into more parts)

II algebraic facts

The unknown quantity inn't changing but the variables change what is done to give the result.

## YEAR 7

## What do I need to be able to do?

By the end of this unit you should be able to:

- bentify and represent sets
- interpret and create Vern diagrams
- Understand and use the intersection of sets
- Understand and use the union of sets
- Generate sample spaces for single events
- Calculate the probability of a single event
- Understand and use the probability scale


## Keywords

Set: collection of things
Element: each item in a set is called an element
11 Intersection: the overlapping part of a Venn diagram (QND $\cap$ )
Union: two ellipses that join (OR U)
1 Mutually Exclusive: events that do not occur at the same time
| Probability: lIkelihood of an event happening
II Bias: a builtin error that makes all values wrong (unequal) by a certain amount, eg a weighted dice
II Fair: there is zero bias, and all outcomes have an equal likelihood
I Random: something happens by chance and is unable to be predicted

## dentify and represent sets

The universal set has this symbol $\xi$ - this means EVERYTHING in the Venn diagram is in this set
a set is a collection of things - you write sets inside curly brackets \{ \}
$\xi=\{$ the numbers between 1 and 50 inclusive $\}$


Interpret and create Venn diagrams


Mutually exclusive sets The two sets have nothing in common No overlap

Union of sets
The two sets have some elements in common - they are placed in the intersection


Subset
all of set $B$ is also in Set $A$ so the ellipse fits inside the set

Ground the outside of every Venn diagram will be a box. If an
element is not part of any set it is placed outside an ellipse but
inside the box



The elements in $A \cup B$ are $5,10,15,3,9,6,12$ There are 7 elements that are ether a multiple of 5 OR a multiple of 3 between 1 and 15

This Venn shows the number of elements in each set

II Sample space - for single events
a sample space for rolling a six-sided

dice is $S=\{1,2,3,4,5,6\}$
a sample space for this spinner is
$S=\{$ Pink, Blue, Yellow $\}$
You only need to write each element once in a sample space diagram


$$
\frac{4}{10}=\frac{40}{100}=0.40=40 \%
$$

## Probability is always a value between 0 and I

- a sample space represents a possible outcome from an event
- They can be interpreted in a variety of ways because they do I not tell you the probability


II Sum of probabilities

| II |
| :--- |
| Probability is always a a value between 0 and 1 |

## YEAR 7

## Prime numbers and Proof

## What do I need to be able to do?

By the end of this unit you should be able to:

- Find and use mutiples
- Dentify factors of numbers and expressions
- Recognise and identify prime numbers
- Recognise square and triangular numbers
- Find common factors including HCF
- Find common mutiples including LCM


## Keywords

Mutiples: found by multiplying any number by positive integers
Factor: integers that mutipy together to get another number.
| Prime: an integer with only 2 factors.
I Conjecture: a statement that might be true (based on reasoning) but is not proven
I| Counterexample: a special type of example that disproves a statement.
II Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)
I HCF: highest common factor (biggest factor two or more numbers share)
I I LCM: lowest common mutiple (the first time the times table of two or more numbers match)

Mutiples The "times tabke" of a given number all the numbers in this lists below are multiples of 3 .
$\begin{array}{|cc|}3,6,9,12,15 \ldots \\ \text { Ths st continues sond doest't } \\ \text { end }\end{array} \quad 3 x, 6 x, 9 x \ldots$


Leam or how-to quick recall..
$2,3,5,7,11,13,17,19,23,29 \ldots$
isquare and triangular numbers
Sauare numbers
Trianavalar numbers
Representations are useful - an extra coun
ove
Common multiples and LCM
LCM - Lowest common multiple
LCM of 9 and 12
$9 \quad 9,18,27,36,45,54$
$12 \quad 12,24,36,48,60$

## Comparing fractions


a patem that is noticed for many cases


Common multiples are mutliples two or more numbers share


all three prime factor trees represent the same decomposition
Muttiplication is commutative
$30=2 \times 3 \times 5$


Mutipication of prime factors
Using prime factors for predictions
eg $60 \quad 30 \times 2 \quad 2 \times 3 \times 5 \times 2$
$150 \quad 30 \times 5 \quad 2 \times 3 \times 5 \times 5$

