Working in the Cartesian plane

awhat adomanteed to be able

to do?

By the end of this unit you should be able to:

- Label and identify lines parallel to the
- Recognise and use basic straight lines
- Identify positive and negative gradients
- Link linear graphs to sequences
- Plot u = mx + c graphs

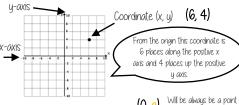
Keuwords

Quadrant: four quarters of the coordinate plane.

Coordinate: a set of values that show an exact position.

Horizontal: a straight line from left to right (parallel to the x axis)

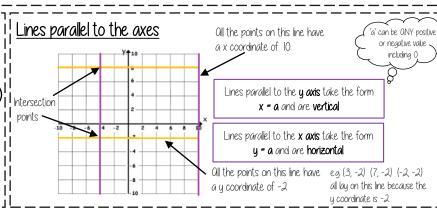
Vertical: a straight line from top to bottom (parallel to the y axis)

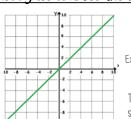

Origin: (0,0) on a graph. The point the two axes cross

Parallel: Lines that never meet

Gradient: The steepness of a line

I Intercept: Where lines cross

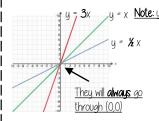

Coordinates in four quadrants


Olways the 🗡 Olwaus the position on the position on the x axis first u axis second

on the y axis. (a can be any number)

(a, 0) Will be always be a point on the x axis. (a can be anu number)

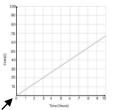
Recoanise and use the line y=x


This means the x and the y coordinate have the same

Examples of coordinates on this line: (0, 0) (-3, -3) (8, 8)

The axes scale is important — if the scale is the same y = x will be a straight line at 450

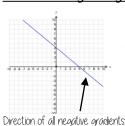
Recoanise and use the lines y=kx


of the line x Note: y = x is the same as y = 1x

The bigger the value of k the **steeper** the line will

The closer to 0 the value of k the closer the line will be to the x axis.

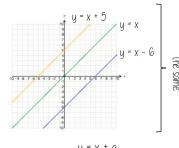
Direct Proportion using u=kx



The line must be straight to be directly proportional — variables increase at the same rate k

=========

Direct proportion graphs always start at (0,0) as they are describing relationships between two variables


Lines with negative gradients

Ony straight-line graph with a negative x value has a negative gradient

Eq. y = -2x $y = -x \quad y + x = 12$

Lines in the form y = x + a

This is the line y=x when the y and x coordinate are

of the x coordinates

the same

П

This shows the translation I of that line. e.g.y = x + 5 i

because the gradients are

Is the line y=x moved 5 | places up the araph i 5 has been added to each

Plotting y = mx + c graphs → 3 x the x coordinate then — 1 y = 3x - 1

This represents a coordinate pair

You only need two points to form a straight line

Draw a table to display this

Plotting more points helps you decide if your calculations are correct (if they do make a straight line)

Remember to join the points to make a line

Fractions & Percentages

@whiat admanded to be able to do?

<u>to do?</u>

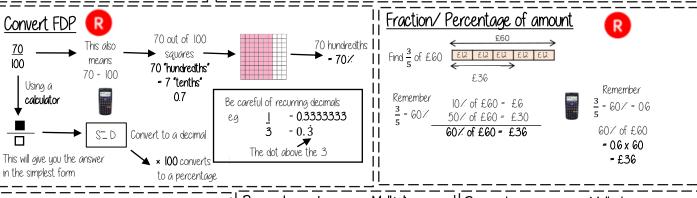
By the end of this unit you should be able to:

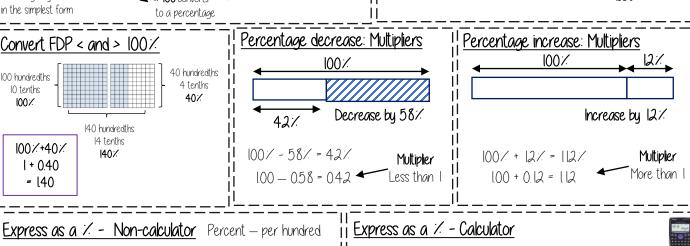
- Convert between FDP less than and more than 100.
- Increase or decrease using multipliers.
- Express an amount as a percentage.
- Find percentage change.

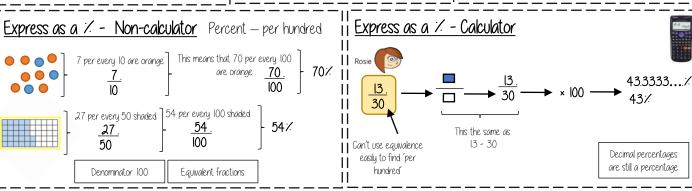
! Keywords

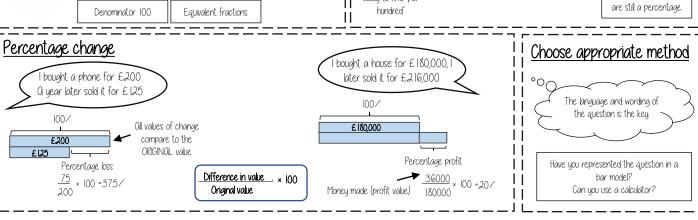
Percent: parts per 100 — written using the / symbol

Decimal: a number in our base 10 number system. Numbers to the right of the decimal place are called decimals. **Fraction**: a fraction represents how many parts of a whole value you have.


! Equivalent: of equal value.


Reduce: to make smaller in value.


Growth: to increase/ to grow.


Integer: whole number, can be positive, negative or zero.

Invest: use money with the goal of it increasing in value over time (usually in a bank).

Brackets, Equations & Inequalities

@whatodomaneed to be able to do?

By the end of this unit you should be able to:

- Form Expressions
- Expand and factorise single brackets
- Form and solve equations
- Solve equations with brackets
- Represent inequalities
- Form and solve inequalities

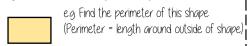
Keywords

Simplifu: grouping and combining similar terms

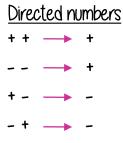
Substitute: replace a variable with a numerical value

Equivalent: something of equal value

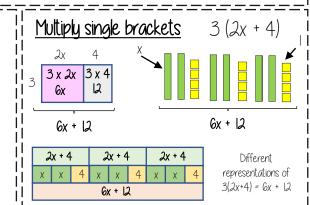
Coefficient: a number used to multiply a variable

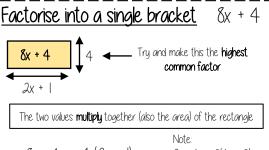

Product: multiply terms

Highest Common Factor (HCF): the biggest factor (or number that multiplies to give a term)

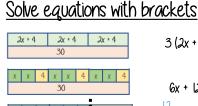

Inequality: an inequality compares who values showing if one is greater than, less than or

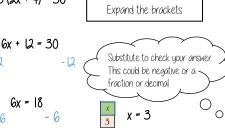
For unknown variables, a letter torm expressions is normally used in its place More than - QDDLess than/difference - SUBTROCT e.a. 4 more than t -8 less than k -


Only similar terms can be grouped together



t + 2t + I + t + 2t + I -


e.g. a = -5 and b = 2 $a^2 = a \times a = -5 \times -5 = 25$


$$\delta x + 4 \equiv 4 (2x + 1) \qquad \delta x + 1$$
This

 $8x + 4 \equiv 2(4x + 2)$ This is factorised but the HCF has not been used

3(2x + 4) = 303(2x + 4) = 30

Simple Inequalities

< less than < Less than or

eaual to > More than ≥ More than or

equal to x < 10Sau this out loud

"x is a value less than 10" 10 > xSay this out loud x<10 and 10>x 10 is more than the value' represent the same

x + 2 < 20

"my value + 2 is less than or equal to 20"

The biggest the value can be is 18

Form and solve inequalities

Two more than treble mu number is greater than 11 Find the possible range of values

Form

Solve

¹¹ Check

This would suggest any value bigger than 3 satisfies the statement 3 x 3 + 2 = 11 ✓ 10 x 3 + 2 = 32 V

<u>Olgebraic</u> constructs

Expression

a sentence with a minimum of two numbers and one maths operation

Equation

a statement that two things are equal

a single number or variable

Identitu

On equation where both sides have variables that cause the same answer includes ≡

Formula

a rule written with all mathematical symbols e.g. area of a rectangle $Q = b \times h$

Standard Form

Whatdo maded to be able to do?

By the end of this unit you should be able to:

- Write numbers in standard form and as ordinaru numbers
- Order numbers in standard form
- Odd/ Subtract with standard from
- Multiply/ Divide with standard form
- Use a calculator with standard form

Keywords

Standard (index) Form: O sustem of writing very big or very small numbers

Commutative: an operation is commutative if changing the order does not change the result

Base: The number that gets multiplied by a power

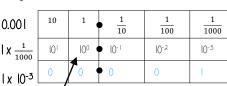
Power: The exponent — or the number that tells you how many times to use the number in multiplication. **Exponent**: The power — or the number that tells you how many times to use the number in multiplication

Indices: The power or the exponent.

Negative: a value below zero.

Positive powers of 10 l billion - 1 000 000 000

Oddition rule for indices $10^a \times 10^b = 10^{a+b}$


Subtraction rule for indices $10^a \div 10^b = 10^{a-b}$

Standard form with numbers > 1

Onu number between I and less than 10 '

A x 10 n

Negative powers of 10

Example

3.2 x 10 4

ll = 32000

= 3.2 x 10 x 10 x 10 x 10

0.8 k 10 4

Non-example

53x 10(07)

Ony value to the power O always = 1

Negative powers do not indicate negative solutions

Numbers between 0 and 1

0.054 $= 5.4 \times 10^{-2}$

1	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$
100	10-1	10-2	10-3
0	0	5	4

O negative power does not mean a negative answer — it means a number closer to 0

Order numbers in standard form

 1.3×10^{-1} 3.3 x 100

Look at the power first

 6.4×10^{-2} 2.4 x 102

will the number be = > or < than I

0.064 240

0.13 Use a place value arid to compare the numbers for orderina

Mental calculations

6.4 x 10² x 1000 Not in Standard Form

 $6.4 \times 10^{2} \times 10^{3}$

= 6.4 x 10⁵

 $(2 \times 10^3) \div 4$

 $= (2 \div 4) \times 10^3$

 $= 0.5 \times 10^3$

Use addition for indices rule

Divide the values

= 24 x 105 Not in Standard Form 1

= 2.4 x 10¹ x 10⁵

(8)x 105 x(3)

Use addition for indices rule.

Ony integer

 $= 2.4 \times 10^{6}$

Remember the layout for standard form

Ony number between I and less than 10

Oddition and Subtraction

Tip: Convert into ordinary numbers first and back to standard from at the end

Method I

= 600000 + 800000

= 1400000

= 1.4 x 10⁵

More robust method Less room for misconceptions Easier to do calculations with

negative indices

Can use for different powers

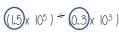
6 x 105 + 8 x 105 Method 2

final answer

 $= (6 + 8) \times 10^{5}$

14 x 10⁵ This is not the -

1.4 x 10 1 x 105 = 1.4 x 10⁵


Only works if the powers are the same

Multiplication and division

Division auestions can look like this

For multiplication and division you can look at the values for A and the powers of 10 as two separate calculations

A x 10 n 4

1.5 + 0.3 x 10⁵ + 10³

Revisit addition and subtraction laws for indices they are needed for the calculations

 $=5 \times 10^{2}$

Oddition law for indices $a^m x a^n = a^{m+n}$

Subtraction law for indices $a^m \div a^n = a^{m-n}$

Using a calculator

 $14 \times 10^5 \times 39 \times 10^3$

Use a calculator to work out this question to a suitable degree of accuracy

hput 14 and press (x10x) Then press 5 (for the power)

Input 3.9 and press **x10**° Then press 3 (for the power) Press

This gives you the solution

Click calculator for video tutorial

To put into standard form and a suitable degree of accuracy

Press SHIFT (SETUP) and then press 7 for sci mode. Choose a degree of accuracy so in most cases press 2

Onswer: 5.5 x 108

YFAR 8

Applying number

What do I need to be able to do?

By the end of this unit you should be able to:

- Round numbers to powers of 10 and 1 sf
- Round numbers to any dp
- Estimate solutions
- Calculate using order of operations
- Calculate with money, units of measurement and time

Keywords

Significant: Place value of importance

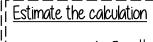
Round: Making a number simpler but keeping its value close to what it was.

Decimal: Place holders after the decimal point.

Overestimate: Rounding up — gives a solution higher than the actual value **Underestimate**: Rounding down — gives a solution lower than the actual value.

Metric: a system of measurement.

Balance: The amount of money in a bank account


Deposit: Putting money into a bank account


Round to powers of 10 and 1 sig. figure 370 to I sianificant fiaure is 400 37 to I significant figure is 40 3.7 to I significant figure is 4 5475 to the nearest 10 5495 to the nearest 1000 5475 to the nearest 100 0.37 to 1 significant figure is 0.4 5480 5000 5400 6000 0.00037 to 1 significant figure is 0.0004 Round to the first non-zero number

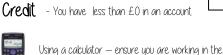
Order of operations

24

246

Brackets Operations in brackets are calculated first

Other operations e.g. powers, roots, Multiplication/Division


They are carried out in the order from left to right in the question

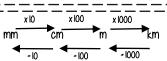
¹ Oddition/ Subtraction

They are carried out in the order from left to right in the

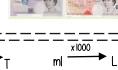
Calculations with money

- You have £0 or more in an account Debit

correct units. £130 + 50p = 130 + 50 (in pence) = 1.30 + 0.50 (in pouinds)


Money calculations are to

2dp



x 1000

Metric measures of lenath

Units of weight/capacity

Kilo = 1000 x meter

Milli - $\frac{1}{1000}$ x meter

Weight = a, ka, t

Time and the calendar

12 Months = one year = 52 weeks 31 days - Jan, March, May, July Oug, Oct, Dec 30 daus — Opril June, Sept, Nov

28 days — **Feb** (29 leap year)

<u>l week</u> — 7 days Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday Iday - 24 hours I hour - 60 minutes I minute - 60 seconds

Use a number line for time calculations!

<u>Onalogue Clock</u>

Digital Clock (24-hour times) Use am (morning) and pm (afternoon)

0-11 (morning hours) 12-23 (afternoon hours)

Capacity (volume of liquid) = ml, L