YEAR 7 - APPLICATION OF NUMBER
 @whisto_maths

 Solving problems with addition and subtraction

 Solving problems with addition and subtraction}

What do I need to be able to do?

I By the end of this unit you should be able to:

- Understand properties of addition/ subtraction

- Use mental strateges for adodition/subtraction

Use formal methods of addition/Subtraction for integers I Use formal methods of addition/Subtraction for decimals | Solve problems in context of perimeter
Sove problems with finance, tables and timetables
Sove problems with frequency trees
|- Solve problems with bar charts and line charts
Keywords
I I Commutative: changing the order of the operations does not change the result
I Associative: when you add or mutiply you can do so regardless of how the numbers are grouped
Inverse: the operation that undoes what was done by the previous operation. (The opposite operation)
Placeholder: a number that occupies a position to give value
Perimeter: the distance/ length around a 2D object
I Polygon: a 2 D shape made with straight lines
I Balance: in financial questions - the amount of money in a bank account
I | Credit: money that goes into a bank account
I | Debit: money that leaves a bank account
$============\Perp=============================1$

Iaddition/Subtraction with integers

- Bar models

1. Part/ Whole diagrams
addition is commutative
Subtraction the order has to stay the same
$360-147=360-100-40-7$

- Number lines help for addition and subtraction
- Working in 10 's first aids mental addition/ subtraction
-Show your relationships by writing fact familes

Formal written methods

Remember the place value of each column You may need to move 10 ones to the ones column to be able to subtract

Solve problems with finance

Money uses a two decimal place system

$$
142 \text { on a calculator represents } £ 1420
$$

Check the units of currency - work in the same

Harton	1005	1045	1130
Bridge	1024	1106	1147
Aville	1051	1133	1205
Ware	1117	1202	1233

Each column represents a journey, each row represents the time the 'bus' arrives at that location

TIME CALCUALTIONS - use a number line

Two-way tables

Where rows and columns intersect is the
outcome of that action.

60 people visted the zoo one Saturday morning
26 of them were adults. 13 of the aduut's favourite animal was an elephant 24 of the children's favourte animal was an elephant.

The overall total "60 people'
a frequency tree is made up from part-whole models. One piece of information leads to another
 be taken from the completed trees
eg 34 children visited the zoo

II Bar and line charts

Use addition/ subtraction methods to extract information from bar charts.
eg Difference between the number of students who waked and took the bus. Wak frequency - bus frequency

When describing changes or making predictions.

- Extract information from your data source
- Make comparisons of difference or sum of values.
- Put into the context of the scenario

Year 7 - fractional thnaning

addition and subtraction of fractions

$$
\begin{aligned}
& 1 \text { I } \bar{K}-ー \text { Reywords } \\
& \text { I } \\
& \text { I Numerator : the number above the line on a fraction. The top number. Represents how many parts are taken } \\
& \text { I Denominator: the number below the line on a fraction The number represent the total number of parts } \\
& \text { I Equivalent: of equal value } \\
& \text { I Mixed numbers: a number with an integer and a proper fraction } \\
& \text { I Improper fractions: a fraction with a bigger numerator than denominator } \\
& \text { I Substitute: replace a variable with a numerical value } \\
& \text { I Place value: the value of a digit depending on its place in a number. In our decimal number system, each place is } \\
& \text { I } 10 \text { times bigger than the place to its right }
\end{aligned}
$$

add/Subtract fractions
Same denominator

add/Subtract unit fractions Same denomandor

$\left\lvert\, \frac{1}{12}+\frac{1}{12}-\frac{1}{12}\right.$ 品

add/Subtraction fractions (common multiples)

I Partitioning method
$2 \frac{1}{5}-1 \frac{3}{10}=2 \frac{2}{10}-1 \frac{3}{10}=2 \frac{2}{10}-1-\frac{3}{10}=1 \frac{2}{10}-\frac{3}{10}=\frac{9}{10}$

- Convert to an improper fraction

Iadd/ Subtract from integers

add/Subtraction any fractions

$\frac{10}{15}$
$\frac{12}{15}$

Use equivalent fractions to find a common multiple for both denominators

II Fractions in algebraic contexts

YEAR 7 - APPLICATION OF NUMBER

@whisto_maths

Solving problems with muttipication and division

YEAR 7 - DIRECTED NUMBER

 Operations with equations and directed numbers

 Operations with equations and directed numbers
 @whisto_maths

What do I need to be able to do?

By the end of this unit you should be able to:
1- Perform calculations that cross zero

11 Keywords

II Subtract: taking away one number from another.
I Negative: a value less than zero.
I | Commutative: changing the order of the operations does not change the result
I | Product: multipy terms
I I Inverse: the opposite function
I I Square root: a square root of a number is a number when mutipied by itseff gives the value (symbol $\sqrt{ }$)
I Square: a term multipled by itseff.
II Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)

YEAR 7 - APPLICATION OF NUMBER
 Fractions and percentages of amounts

What do I need to be able to do?

I By the end of this unit you should be able to:
I - Find a fraction of a given amount
| - Use a given fraction to find the whole or other fractions
I - Find the percentage of an amount using mental methods

- Find the percentage of a given amount using a calculator

Keywords

II
Fraction: how many parts of a whole we have
Equivalent: of equal value
Whole: a number with no fractional or decimal part
Percentage: parts per 100 (uses the \% symbol)
Place Valve: the value of a digit depending on its place in a number. In our decimal number system, each place is
10 times bigger than the place to its right
Convert: change into an equivalent representation, often fraction to decimal to a percentage cycle.

Fraction of a given amount The bar represents the whole amount

90
Find $\frac{2}{5}$ of $£ 205$

$£ 205 \div 5=£ 41$
Each part of the bar model represents $£ 41$
$2 \times £ 41=£ 82$

The wording of the question is important to setting up the bar model

What is $\frac{\mathbf{1}}{\mathbf{6}}$ of the number?

Find the whole

Use the whole to find a given part

The whole represents 100%

Method 1
$65 \%=10 \% \times 6+5 \%$
$=(8 \times 6)+4$
$=52$
Method 2
$65 \%=50 \%+10 \%+5 \%$
$=40+8+4$
$=52$

For bageer percentagess tis sometimes essiser to tate away from
100%

\section*{| $\frac{2}{3}$ of a vave is 70 . What is the whole number? |
| :--- | :--- | :--- |}

Use a fraction of amount

Find the percentage of an amount (Calculator methoods) Using a multipier

Find 65% of 80 Fraction, decimal percentage conversion $65 \%=\frac{65}{100}-065 \longleftarrow$ The mutipier
$0.65 \times 80=52$

Using the percent button
Find 65% of 80
Type 65
Press 5 shlf $0(\%)$
Press 80 and then press $=$
This brings up the $\%$ button on screen You will see 65\%.

> You can also use the calculator to support non calculator methods and find 1% or 10% then add percentages together

"of" can represent ' x ' in calculator methods

