YEAR 9

## Pythagoras' theorem

## Whistrat ditbo I need to be able to do? <br> By the end of this unit you should be able to: <br> - Use square and cube roots <br> - Identify the hypotenuse <br> - Calculate the hypotenuse <br> - Find a missing side in a Right angled triangle <br> - Use Pythagoras' theorem on axes <br> - Explore proofs of Pythagooras' theorem

## Keywords

Square number: the output of a number mutiplied by itseff
Square root: a value that can be muttiplied by itseff to give a square number Hypotenuse: the largest side on a right angled triangle. Always opposite the right angle. Opposite: the side opposite the angle of interest
adjacent: the side next to the angle of interest

$a=3 \quad b=4 \quad c=5$

$$
\text { eg } a^{2}+b^{2}=\text { hypotenuse }{ }^{2}
$$

If a triangle is right-angle

eg $a^{2}+b^{2}=$ hypo
$3^{2}+4^{2}=5^{2}$
$9+16=25$
f $a$ triangle is right-angle

eg $a^{2}+b^{2}=$ hypo
$3^{2}+4^{2}=5^{2}$
$9+16=25$
Ether of the
short sides
can be
labeled $a$ or $b$

## Calculate the hypotenuse



$$
a^{2}+b^{2}=\text { hypotenuse }{ }^{2}
$$

$3^{2}+6^{2}=$ hypotenuse $^{2}$ $9+36=$ hypotenuse $^{2}$
$45=$ hypotenuse $^{2}$
2.10 find the hypotenuse
square root the sum of the squares of the shorter sides.


-     -         -             - 


## Calculate missing sides



Substituting the numbers into the theorem shows that this is a right-angled triangle
sum of the squares of the shorter sides will equal the square of the hypotenuse.

$$
a^{2}+b^{2}=\text { hypotenuse }{ }^{2}
$$



$$
\operatorname{eg} \sqrt{64}=8
$$

$$
\text { Because } 8 \times 8=64
$$

$$
8 \times 8
$$

$$
9 \times 9
$$

$$
10 \times 10
$$

$$
81 \quad 100
$$



The hypotenuse is aways the longest side on a triangle because it is opposite the biggest angle.



The ine segment is the hypotenuse

$$
a^{2}+b^{2}=\text { hypotenuse }^{2}
$$

The lengths of $a$ and $b$ are the sides of the triangle.

## YEAR 9

## Forming and Solving Equations



## YEAR 9

## Soling ratio \& proportion problems

## Whatratityo I need to be able to do?

By the end of this unit you should be able to:

- Solve problems with direct proportion
- Use conversion graphs
- Solve problems with inverse proportion
- Solve ratio problems
- Solve 'best buy' problems


## Keywords

II
Proportion: a comparison between two numbers
Ratio: a ratio shows the relative size of two variables
Proportion: a comparison between two numbers
Ratio: a ratio shows the relative size of two variables
Direct proportion: as one variable is multiplied by a scale factor the other variable is multiplied
II Direct proportion: as one
Inverse proportion: as one variable is multiplied by a scale factor the other is divided by the same scale factor.
1
as one variable changes the other changes at the same rate.

This is a multiplicative change
4 cans of pop $=£ 2.40$


This multiplier is the same In the same way that this would be for ratio


Sometimes this is easiest if you work out how much one unit is worth first eg 1 can of pop $=£ 0.60$

Conversion Graphs compare two variables
This is always a straight line because as one variable
increases so does the other at the same rate

To make conversions between units you need to find the point to compare - then find the associated point by using your graph
Using a ruler helps for accuracy
Showing your conversion lines help as a "check" for solutions

Inverse Proportion as one variable is multiplied by a scale factor the other is divided by the same scale factor

Examples of inversely proportional relationships

Time taken to fill a pool and the number of taps running

Time taken to paint a room and the number of workers
$T$ is inversely proportional to $G$. When $T=2$ then $G=20$



Best Buys Have a directly proportional relationship
To calculate best buys you need to be able to compare the cost of one unit or units of equal amounts

Shop $\mathbf{A}$
4 cans for $£ 120$
$\downarrow £ 1.20 \div 4 \quad £ 0.93 \div 3$
Cost per item
I can is $£ 0.3$ Or 30p
| can is $£ 0.31$ | or $31 p$

Shop Ais the best value as it is $1 p$ cheaper per can of pop


Cost per pound

Shop $A$ is still shown as being the best value but pay attention to the unit you are calculating, per item or per pound

Best value is the most product for the lowest price per unit

## YEAR 9

## 3D Shapes



## YEAR 9



## Keywords

Integer: a whole number that is positive or negative
Rational: a number that can be made by dividing two integers
Irrational: a number that cannot be made by dividing two integers
Inverse operation the operation that reverses the action
Quotient: the result of a division
Product: the result of a mutipication.
Muttiples: found by muttiplying any number by positive integers
Factor: integers that mutiply together to get another number

I Integers, real and rational numbers
I Rational - root word: ratio
Real numbers: $\frac{2}{3}$ stems from $2: 1 \frac{2}{3}$ of the whole)
$\begin{aligned} & \text { lrational numbers: } \sqrt{2} \text { the soltion is a decimal that } \\ & \text { never ends and does not repeat }\end{aligned}$

The square root of a negative is not a real number and cannot be found

## HCF of 18 and 30



