YEAR 8

Muttiplying and Dividing Fractions

Representing a fraction

Denominator

Number of parts to make up the whole Denominator

I aLL PaRTS of a fraction are of equal size

Multiplying unit fractions

Mutiplying non-unit fractions

Quick Muttiplying and Cancelling down

Dividing an integer by an unit fraction

The reciprocal When you mutiply a number by its reciprocal the answer is aways I

Keywords

Numerator: the number above the line on a fraction The top number. Represents how many parts are taken Denominator: the number below the line on a fraction. The number represent the total number of parts.
I | Whole: a positive number including zero without any decimal or fractional parts.
I Commutative: an operation is commutative if changing the order does not change the result
I I Unit Fraction: a fraction where the numerator is one and denominator a postive integer.
I Non-unit Fraction: a fraction where the numerator is larger than one
II Dividend : the amount you want to divide up.
I Divisor: the number that divides another number.
I Quotient: the answer after we divide one number by another. eg dividend- divisor = quotient
Reciprocal: a pair of numbers that mutipy together to give 1
Repeated addition = multipication by an integer

Each whole is spit into the same number of parts as the denominator

Multiplying by a reciprocal gives the same outcome

Represented

YEAR 8

Ratio and Scale

to do? solved

QWhiatedol rated to be able

By the end of this unit you should be able to:

- Simplify any given ratio
- Share an amount in a given ratio
- Solve ratio problems given a part

Solutions should be modelled, explained and

Keywords

Ratio: a statement of how two numbers compare
I Equal Parts: all parts in the same proportion, or a whole shared equally
Proportion: a statement that links two ratios
II Order: to place a number in a determined sequence
II Part: a section of a whole
II Equivalent: of equal value
${ }_{1}$ I Factors: integers that multiply together to get the original value
I I Scale: the comparison of something drawn to its actual size.

Representing a ratio
 "For every 5 boys there are 3 girls"

This is the "whole" - boys and girls together

This represents the 5 boys
$5: 3$

This represents the 5 boys Double Number Line

Order is Important

"For every dog there are 2 cats"

I The ratio has to be written in the I same order as the information is given
I eg $2: 1$ would represent 2 dogs for TUnis are important

Simpifiuing a ratio
Cancel down the ratio to its lowest form
"For every 6 days of rain there are 4 days of sun"

Find the biggest common
factor that goes into all
parts of the ratio
For 6 and 4 the biggest
factor (number that
multiplies into them is 2)
"For every 3 days of rain there are 2 days of sun" - when this happens twice the ratio becomes 6.4.

Ratio \ln (or n:
1
| | This is asking you to cancel down until the part indicated represents I

I When using a ratio - all parts should be in the same units Useful Conversions

Sharing a whole into a given ratio

James and Lucy share $£ 350$ in the ratio 3:4. Work out how much each person earns
Mosel the Question
James Lucy
$3: 4$

I Find the value of one part I Whole £350
I 7 parts to share between
Put back into the question
1
1

 Lucy
 $£ 350-7=£ 50$
 $\square=$ one part £50

James $=3 \times £ 50=£ 150$

Blue pens $=5 \times 10=50$ pens

Muttiplicative Change

YEAR 8 －ALGEBRAIC TECHNIQUES

What do I need to be able to do？

By the end of this unit you should be able to：
－Generate a sequence from term to term or position to term rules
－Recognise arithmetic sequences and find the nth term
－Recognise geometric sequences and other sequences that arise

Keywords

I I Sequence：tems or numbers put in a pre－decided order
Term：a single number or variable
Position：the place something is located
I I Linear：the difference between terms increases or decreases（＋or－）by a constant value each time
I I Non－linear：the difference between terms increases or decreases in different amounts，or by x or \div
I Difference：the gap between two terms
I arithmetic：a sequence where the difference between the terms is constant
｜Geometric：a sequence where each term is found by multiplying the previous one by a fixed non zero I I number

ㄴニニニニニニニニニニニニニ - 느 $======$

Linear and Non Linear Sequences

Linear Sequences－increase by addition or subtraction and the same amount each time ｜Non－linear Sequences－do not increase by a constant amount－quadratic，geometric I and Fibonacci．
I－Do not plot as straight lines when modelled graphically
｜－The differences between terms can be found by addition，subtraction，muttiplication or division．

Fibonacci Sequence－look out for this type of sequence

Each term is the sum of the previous two terms

Sequences from algebraic rules This is substitution

This will be linear－note the single power of n The values increase at a constant rate

$$
2 n-5 \longrightarrow
$$

Substitute the number of the term you are looking for in place of＇n＇
eg
st term $=2(1)-5=-3$
$2^{\text {nd }}$ term $=2(2)-5=-1$
$100^{\text {th }}$ term $=2(100)-5=195$

Checking for a term in a sequence form an equation

$3 n^{2}+7$

This is not linear as there is a power for n

Graphically Term：the number or variable
（the number of squares in each image） In a table

I｜Because the terms increase by the same addition each time this

｜｜is linear - as seen in the graph

II Complex algebraic rules

is 201 in the sequence $3 n-4$ ？

$$
3 n-4=201
$$

Solving this will find the position of the term in the sequence I
abecracic nee $3 n-4=201$ Term to chech ONLY an integer solution can be in the sequence I

Finding the algebraic rule
\qquad $4,8,12,16,20 \ldots$ times table

This has the same constant difference－but is 3 more than the original sequence

This is the comparison

This is the constant difference between the terms in the sequence
（difference）between the original and new sequence

YEAR 8 －ALGEBRAIC TECHNIQUES

What do I need to be able

 to do？By the end of this unit you should be able to：
－add／Subtract expressions with indices
－Mutiply expressions with indices
－Divide expressions with indices
－Know the addition law for indices
－Know the subtraction law for indices

Keywords

Base：The number that gets mutiplied by a power
Power：The exponent－or the number that tells you how many times to use the number in multiplication
Exponent：The power－or the number that tells you how many times to use the number in multipication
I Indices：The power or the exponent．
I Coefficient：The number used to mutiply a variable
Simplify：To reduce a power to its lowest term
Product：Mutiply

［äddition／Subtraction with indices

Multipy expressions with indices

$4 b \times 3 a$	$5 t \times 9 t$
三4×b×3×a	三5xtx9xt
三4×3×b×a	三5x9xtxt
$\equiv 12 a b$	$\equiv 45 t^{2}$

$2 b^{4} \times 3 b^{2}$
$\equiv 2 \times b \times b \times b \times b \times 3 \times b \times b$
$\equiv 2 \times 3 \times b \times b \times b \times b \times b \times b$
$\equiv 6 b^{6}$

here are often misconceptions with this calcuation but break down
the powers

Divide expressions with indices

addtion／Subtraction laws for indices
$3^{5} \times 3^{2}$

$1=(3 \times 3 \times 3 \times 3 \times 3) \times(3 \times 3)$
I The base number is all the same so the terms
can be simpified

> addition law for indices
> $a^{m} \times a^{n}=a^{m+n}$

$$
\begin{gathered}
3^{5} \div 3^{2} \rightarrow \frac{3^{3}}{30} \rightarrow \frac{3^{3}}{3 \times 3 \times 3 \times 3 \times 3} \rightarrow \frac{3^{3}}{1} \\
\begin{array}{c}
\text { Subtraction law for indices } \\
a^{m} \div a^{n}=a^{m-n}
\end{array}
\end{gathered}
$$

YEAR 8

Representing Data

Qalhmat dol medterasto be able to do?
 By the end of this unit you should be able to
 - Draw and interpret scater graphs
 - Describe correlation and relationships.
 - dentify different types of non-Inear relationships.
 - Desian and complete an ungrouped frequency table.
 1-Read and interpret grouped tables (discrete and contintous data)
 I- Represent data in two way tables.

Keywords

Variable: a quantity that may change within the context of the problem.
Relationship: the link between two variables (items). Eg Between sunny days and ice cream sales Correlation: the mathematical definition for the type of relationship.
I Origin: where two axes meet on a graph
I Line of best fit: a straight line on a graph that represents the data on a scatter graph.
Outier: a point that lies outside the trend of graph
Quantitative: numerical data
Qualitative: descriptive information, colours, genders, names, emotions etc.
I Continuous: quantitative data that has an infinite number of possible values within its range.
Discrete: quantitative or qualitative data that only takes certain valves.
Frequency: the number of times a particular data value occurs.

Ungrouped Data
IThe number of times an
event happened 2 people had 0 sibings. This means the
are 0 siblings to be counted here

The table shows the number of sibings students have. The answers were
$3,1,2,2,0,3,4,1,1,2,0,2$
2 people had 0 siblings. This means ther
+

2 people have 3 siblings so there are 6
siblings in total
Best represented by
discrete data (Not
aways a number)
OVERQLL there are
$0+3+8+6+4$
Siblings $=21$ sibings

Grouped Data

better to group it This is so it is easier a look for a trend Fom I groups of equal size to make comparison more valid and spread the groups out from the smallest to the largest value.

	Cost of TV ($£$)	Tally	Frequency
	101-150	Tak 11	7
	151-200	Trac. Tack 1	11
	201-250	Trus.	5
	251-300	111	3

We do not know the exact value of each item in a group - so an estimate would be bused to calculate the overall total (Midpoint)
Continuous Data
To make sure al values are
ncloded nequalties represent
the subgroups

To find a fraction
eg What fraction of the items are red? 3 reditems
but 8 items in total $=\frac{3}{8}$

Interkeaving: Use your fraction, decimal percentage equivalence knowledge

Tables and Probability

What do I need to be able to do?
 By the end of this unit you should be able to:

- Construct a sample space diagram.
- Systematically list outcomes.
- Find the probability from two-way tables.
- Find the probability from Venn diagrams.

Keywords

Outcomes: the result of an event that depends on probability Probability: the chance that something will happen
Set: a collection of objects.
I I Chance: the likelihood of a particular outcome
I I Event: the outcome of a probability - a set of possible outcomes
Biased: a built in error that makes all values wrong by a certain amount.
I I Union Notation ' U ' meaning the set made by comparing the elements of two sets. 11

Construct sample space diagrams

Sample space diagrams provide a systematic way to display outcomes from events

The possible outcomes from roling a dice

This is the set notation to list the outcomes $S=$

$S=\{\mathbb{H}, 2 H, 3 H, 4 H, 5 H, 6 H, 1 T, 2 T, 3 T, 4 T, 5 T, 6 T\}$

Probabily from sample spoce

The possible outcomes from rolling a dice

		1	2	3	4	5	6
	H	I,H	$2 . \mathrm{H}$	3, H	4, H	5, H	6, H
	T	IT	(2,,	3,T	(4,T)	5,T	(6,T)

What is the probability that an outcome has an even number and a tails?

This is the set notation that represents the question P

There are three even numbers with

Probability from two-way tables

	Car	Bus	Wak	Total
Boys	15	24	14	53
Girls	6	20	21	47
Total	21	44	35	

Probability from Venn diagrams
$P($ Girl walk to school $)=\frac{21 .}{100}$

This whole curve inculves
 | Shimming aND badminton

100 students were questioned if they played badminton or went to swimming club.
40 went swimming, 25 went to badminton and 11 went to both.
Everyone that went
swimming
Because II did both we
I calculate just swimming by
$40-11$

