YEAR 7

What do I need to be able to do?

By the end of this unit you should be able to:

- Describe and continue both linear and non-linear sequences
- Explain term to term rules for linear sequence
- Find missing terms in a linear sequence

Keywords

II Sequence: items or numbers put in a pre-decided order
II Term: a single number or variable
II Position: the place something is located
II Rule: instructions that relate two variables
II Linear: the difference between terms increases or decreases by the same valve each time
I| Non-linear: the difference between terms increases or decreases in different amounts
I| Difference: the gap between two terms
II arithmetic: a sequence where the difference between the terms is constant
II Geometric: a sequence where each term is found by multiplying the previous one by a fixed non zero number

Describe and continue a sequence diagrammatically
Count the
number of
circe or
lime in
each image

CHECK - draw the next terms

Sequence in a table and graphically

Position: the place in the sequence

Term: the number or variable (the number of squares in each image)

Graphically

In a table			
Position	1	2	3
Term	3	5	7

Because the terms increase by the same addition each time this
is linear - as seen in the graph

Predictions

Look at your pattern and consider how it will increase
eg. How many lines in pattern 6?
Prediction -13
If it is increasing by 2 each
time - in 3 more patterns there will be 6 more lines

Continue Linear Sequences

$7,11,15,19 \ldots$

How do I know this is a linear sequence?
It increases by adding 4 to each term.
How many terms do I need to make this conclusion?
at least 4 terms - two terms only shows one difference not if this difference is
constant (a common difference).
How do I continue the sequence?
You continue to repeat the same difference through the next positions in the
I_ sequence

Continue non-linear Sequences

$$
1,2,4,8,16 \ldots
$$

How do I know this is a non-linear sequence?
It increases by multiplying the previous term by 2 - this is a geometric sequence because the constant is multiply by 2
How many terms do I need to make this conclusion?
at least 4 terms - two terms only shows one difference not if this difference is constant (a I common difference).
How do I continue the sequence?
You continue to repeat the same difference through the next positions in the sequence

Explain term-to-term rule tor yo o at tron tee to teem

Try to explain this in full sentences not just with mathematical notation.
Use key maths language - doubles, haves, multiply by two, add four to the previous term etc.

YEAR 7

＠whisto＿maths

algebraic notation

What do I need to be able to

 do？By the end of this unit you should be able
to：
－Be abe to use inverse operations and ＂operation families＂
－Be able to substitute into singe and two step function machines．
－Find functions from expressions．
－Form sequences from expressions
－Represent functions graphically．

Keywords

II Function：a relationship that instructs how to get from an input to an output
II Input：the number／symbol put into a function
I Output：the number／expression that comes out of a function
Operation：a mathematical process
Inverse：the operation that undoes what was done by the previous operation（The opposite operation）
Commutative：the order of the operations do not matter．
1｜Substitute：replace one variable with a number or new variable
I｜Expression：a maths sentence with a minimum of two numbers and at least one math operation（no equals sign）
I｜Evaluate：work out
I｜Linear：the difference between terms increases or decreases by the same valve each time
II Sequence：items or numbers put in a pre－decided order

Single function machines

Find functions from expressions

Find the relationship between the input and the output
Sometimes there can be a number of possible functions！ eg $+7 \times$ or $\times 2$ could both be solutions to the above function machine

1 I Using letters to represent numbers

Single function machines（algebra）

－ーーーーーーー－｜

II Two step function machines

Calculate the value at the end of each operation

For the input use the INVERSE operations

$+10$
To find the input from the output Use the INVERSE operation

Substitution into expressions

$4 y \longleftarrow 4$ bis of＇y
If $y=7$ this means the expression is asking for 4 ＇bots of 7

$$
4 \times 7 \text { OR } 7+7+7+7 \text { OR } 7 \times 4 \quad=28
$$

$=7-2=5$

Two step function machines（algebra）

YEAR 7

Equality and Equivalence

What do I need to be able to do?

By the end of this unit you should be able to:

- Form and solve inear equations
- Understand like and unlike terms
- Simplify algebraic expressions

Keywords
II Equality: two expressions that have the same value
II Equation: a mathematical statement that two things are equal
II Equal: : represented by '" symbol - means the same
II Solution: the set or value that salisfies the equation
ISolve: to find the soltion
Inverse: the operation that undoes what was done by the previous operation (The opposte operation)
Term: a single number or variable
I| Like: variables that are the same are ilike'
I| Coefficient: a multipicative factor in front of a variable eg $5 x$ (5 is the coefficient, x is the variable)
II Index: the power
I| Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)

YEAR 7 －PLACE VALUE

＠whisto＿maths

What do I need to be able to do？

By the end of this unit you should be able to：
－Understand place value and the number system including decimals
Understand and use place value for decimals， integers and measures of any size
Order number and use a number line for positive and negative integers，fractions and decimals；
－use the symbols $=, \neq, \leq, \geq$
－Work with terminating decimals and their corresponding fractions
－Round numbers to an appropriate accuracy
－Describe，interpret and compare data distributions using the median and range

Keywords

Approximate：To estimate a number，amount or total often using rounding of numbers to make them easier to calculate with
Integer：a whole number that is positive or negative
I Interval：between two points or values
I Median：a measure of central tendency（middle，average）found by putting all the data values in order and finding the middle ｜｜value of the list．
I Negative：any number less than zero，written with a minus sign
I I Place holder：We use 0 as a place holder to show that there are none of a particular place in a number
I Place value：The value of a digit depending on its place in a number．In our decimal number system，each place is 10 times
｜I bigger than the place to its right
I Range：The difference between the largest and smallest numbers in a set
Significant figure： a digit that gives meaning to a number．The most significant digit（figure）in an integer is the number on the left．The most significant digt in a decimal fraction is the first non－zero number after the decimal point．

henalo on a vumber ine

ㅍニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ1
Rounding to the nearest power of ten If the number is hafiway between we＂round up＂

Decimals

 hundredths

0 ones， 5 tenth and 2 hundredths
$0+0.1+0.1+0.1+0.1+0.1+0.01+0.01$ $=0+0.5+0.02$
$=0.52$

Difference between the biggest and smalest

Ones	Tenths	hundredths
	$0_{0.1}^{0.1}$	
Ones	Tenths	hundredths
	$\underbrace{0.1}{ }^{0.1}$	0.010 .01 0.01

$0.3>0.23$
＂There are more counters in the furthest column to the left＂ the same number of decimal places is another way to compare the number of tenths and hundredths

Three billon，one hundred and forty eight millon，
thirty three thousand and twenty nine
I billion I，000，000， 000
I million｜000， 000

YEAR 7

@whisto_maths

What do I need to be able to do?

By the end of this unit you should be able to:

- Convert fluently between fractions, decimals ε percentages

FDP equivalence

Keywords

Fraction: how many parts of a whole we have
Decimal: a number with a decimal point used to separate ones, tenths, hundredths etc
1] Percentage: a proportion of a whole represented as a number between 0 and 100
I| Place value: the numerical value that a digit has decided by its position in the number
I| Placeholder: a number that occupies a position to give value
II Interval: a range between two numbers
I| Tenth: one whole split into 10 equal parts
II Hundredth: one whole split into 100 equal parts
II Sector: a part of a circle between two radius (often referred to as looking like a piece of pie)
II Recurring: a decimal that repeats in a given pattern

Tenths and hundredths

0 ones, 5 tenth and 2 hundredths
$0+0.1+0.1+0.1+0.1+0.1+0.01+0.01$ $=0+0.5+0.02$
$=0.52$

Onanumber ine

Fifths

The denominator is represented by EQUaLLY
sized parts - this is spiti into quarters

Fractions - on a number line

One whole split into 18 equal parts 18 is the denominator 6 is the numerator

