<u>1 NUMBER – Further Maths</u>

Section 1.1

Q1.	Write this ratio in its simplest form	$\sqrt{12}$: $\sqrt{12}$	48 :	√300	(3	marks)
-----	---------------------------------------	---------------------------	------	------	----	--------

Q2. The *n*th term of a sequence is $n^2 + 12n + 27$

By factorising, or otherwise, show that the 20th term can be written as the product of two prime numbers. (2 marks)

Q3.The value of *x* is 50% **more** than the value of *t*.

The value of *y* is 10% **less** than the value of *w*.

x = y Work out $\frac{1}{w}$ Give your answer as a decimal. (4 marks)

Q4. You are given that m : n = 2 : 5

- (a) Write m in terms of n. (1 mark)
- (b) You are also given that a : b = 10m : 3n
 - Work out a: b where a and b are integers.(2 marks)
- **Q5.** (x + 1) is increased by 20% Its value is now the same as (x + 6)

Work out the value of x.

Q6. a:b:c=5:3:2

Work out	4 <i>a</i> – <i>c</i> : 3 <i>b</i>	Give your answer in its simplest form.	(2 marks)
----------	------------------------------------	--	-----------

Q7. *ABC* is a straight line.

BC is 20% of *AC*.

Work out the coordinates of *B*.

(4 marks)

(3 marks)

Q8. A bag contains 5x red balls and 2x blue balls.

The number of red balls is **decreased** by 20% The number of blue balls is **increased** by 30% There are now 35 **more** red balls than blue balls in the bag.

Work out the value of x.

Q9. *a*, *b* and *c* are numbers such that

Tick the correct box for each statement.

(4 marks)

Q10. *a* and *b* are both **square** numbers greater than 1

ab - 11b is also a **square** number.

By factorising ab - 11b, work out one possible pair of values for a and b. You **must** show your working. (2 marks)

Q11.

P = 4x and Q = 7x

P increases by 25% Q decreases by 40%

Now, P is 28 greater than Q.

Work out the value of x.

(4 marks)

Q12. p, q and r are all integers greater than 1 pqr = 1365

Work out one possible set of values for p, q and r.

Q13. 5*m* is decreased by 40% The answer is (m + 1)

Work out the value of *m*.

volume = $\frac{320}{9}\pi$ cm³ Q14. A cone has

$$h: r = 5:3$$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

where r is the radius of the base and h is the perpendicular height.

Work out the radius of the base.

Q15. Work out the value of
$$\sqrt{\frac{r-49}{r+39}}$$
 when $r = 1.3 \times 10^2$ (2 marks)

Q16.
$$\frac{1}{5}$$
 of $3a = 35\%$ of $(a + 6)$ Work out the value of *a*. (3 marks)

Section 1.2

Q1. How many integers between 200 000 and 400 000 can be formed using only the digits

Q2. Miriam's date of birth is 14/09/2006

She makes a 4-digit number code using digits from her date of birth.

The 4-digit number she makes must

not start with 0

have all different digits.

How many codes can she make?

(2 marks)

(2 marks)

(3 marks)

Q3. Integers are made using some or all of the digits 1, 2, 3, 4, 5 and 6								
Each integer made								
is	is greater than 50 000							
ha	has no digit repeated.							
How ma	any integers ca	n be made?				(3 marks)		
Q4. How r	nany odd numt	pers greater than 30) 000 can be f	ormed from th	ese digits			
	2	4	6	7	8			
with no	repetition of an	y digit?				(3 marks)		
Section 1.	<u>3</u>							
Q1. Write	this ratio in its s	implest form $\sqrt{1}$	2 : √48 : √	300		(3 marks)		
Q2. Write	5√2 3√6 - 7	in the form $\sqrt{3}$	$\frac{1}{2} + \sqrt{k}$ whe	ere <i>w</i> and <i>k</i> ar	e integers.	(5 marks)		
Q3. Write	$\sqrt{500}-2\sqrt{4}$	5 in the form a	$a\sqrt{5}$ where a	is an integer.		(2 marks)		
Q4. Solve	$y(\sqrt{3} - 1) = 8$							
Give yo	our answer in the	e form $a + b\sqrt{3}$	where a and	d b are intege	rs.	(4 marks)		
Q5. Solve	$\sqrt{125} + \sqrt{20}$	$=\sqrt{80}+\sqrt{x}$				(3 marks)		
Q6. Simpli	ify fully $\frac{24 - \sqrt{4\sqrt{3}}}{4\sqrt{3}}$	300 - 5 Give your a	answer in the t	form $a\sqrt{b}$	where <i>a</i> and	<i>b</i> are integers. (5 marks)		
Q7. Solve	$\left(3-\sqrt{x}\right)^{\frac{1}{3}}=$	-2				(3 marks)		
Q8. Write	(1+2√5)(4-	$\sqrt{5}$) in the form	$a+b\sqrt{5}$ wh	here a and b a	re integers.	(2 marks)		

Q9. A linear sequence has first term $7 + 12\sqrt{5}$

The term-to-term rule is
One term of the sequence is an integer. Work out the value of this integer. (2 marks)
Q10. Rationalise the denominator and simplify fully
$$\frac{21-11\sqrt{5}}{3-\sqrt{5}}$$
 (4 marks)
Q11. Rationalise and simplify fully $\frac{\sqrt{3}}{3+\sqrt{3}}$ (3 marks)
Q12. Rationalise and simplify $\frac{\sqrt{3}-7}{\sqrt{3}+1}$
Give your answer in the form $a+b\sqrt{3}$ where a and b are integers. (4 marks)
Q13. Simplify $\frac{\sqrt{3}(\sqrt{75}+\sqrt{48})}{\sqrt{24}}$ writing your answer as an integer. (2 marks)
Q14. Simplify fully $\frac{\sqrt{600}-\sqrt{54}}{\sqrt{24}}$ (3 marks)
Q15. ABC is a triangle. The perpendicular from A meets BC at D.
 $BC = (6 + 2\sqrt{7})$ cm

Area of triangle $ABC = (13 + 3\sqrt{7}) \text{ cm}^2$ Work out the length, in cm, of AD.

Give your answer in the form $a + b\sqrt{c}$ where *a*, *b* and *c* are integers.

(5 marks)