1 NUMBER - Further Maths

Section 1.1

Q1. Write this ratio in its simplest form $\sqrt{12}: \sqrt{48}: \sqrt{300}$

Q2. The nth term of a sequence is $n^{2}+12 n+27$
By factorising, or otherwise, show that the 20th term can be written as the product of two prime numbers.
(2 marks)

Q3.The value of x is 50% more than the value of t. The value of y is 10% less than the value of w.

$$
x=y \quad \text { Work out } \frac{t}{w} \quad \text { Give your answer as a decimal. }
$$

Q4. You are given that $m: n=2: 5$
(a) Write m in terms of n.
(b) You are also given that $a: b=10 m: 3 n$

Work out $a: b$ where a and b are integers.

Q5. $(x+1)$ is increased by 20% Its value is now the same as $(x+6)$ Work out the value of x.

Q6. $a: b: c=5: 3: 2$
Work out $\quad 4 a-c: 3 b$
Give your answer in its simplest form.
(2 marks)

Q7. $A B C$ is a straight line.
$B C$ is 20% of $A C$.

Work out the coordinates of B.
(4 marks)

Q8. A bag contains $5 x$ red balls and $2 x$ blue balls.
The number of red balls is decreased by 20%
The number of blue balls is increased by 30%
There are now 35 more red balls than blue balls in the bag.
Work out the value of x.

Q9. a, b and c are numbers such that

$$
\begin{aligned}
& a<0 \\
& b>1 \\
& -1<c<-1
\end{aligned}
$$

Tick the correct box for each statement.

	Always true	Sometimes true	Never true
$a^{3}<0$	\square	\square	
$b<10 a^{2}$	\square	\square	
$a b>0$	\square	\square	
$b-c>1$	\square	\square	

Q10. a and b are both square numbers greater than 1
$a b-11 b$ is also a square number.
By factorising $a b-11 b$, work out one possible pair of values for a and b.
You must show your working.

Q11.
$P=4 x$ and $Q=7 x$
P increases by 25\%
Q decreases by 40%
Now, P is 28 greater than Q.
Work out the value of x.

Q12. p, q and r are all integers greater than 1
$p q r=1365$
Work out one possible set of values for p, q and r.

Q13. $5 m$ is decreased by 40% The answer is $(m+1)$
Work out the value of m.

Q14. A cone has volume $=\frac{320}{9} \pi \mathrm{~cm}^{3}$

$$
h: r=5: 3
$$

Volume of a cone $=\frac{1}{3} \pi r^{2} h$
where r is the radius of the base and h is the perpendicular height.
Work out the radius of the base.
(3 marks)

Q15. Work out the value of $\sqrt{\frac{r-49}{r+39}}$ when $r=1.3 \times 10^{2}$
(2 marks)

Q16. $\frac{1}{5}$ of $3 a=35 \%$ of $(a+6) \quad$ Work out the value of a.

Section 1.2

Q1. How many integers between 200000 and 400000 can be formed using only the digits
$\begin{array}{lllllll}1 & 2 & 3 & 5 & 8 & 9 & \text { with no repetition of any digit? }\end{array}$

Q2. Miriam's date of birth is $14 / 09 / 2006$
She makes a 4-digit number code using digits from her date of birth.
The 4-digit number she makes must
not start with 0
have all different digits.
How many codes can she make?

Q3. Integers are made using some or all of the digits $1,2,3,4,5$ and 6
Each integer made
is greater than 50000
has no digit repeated.
How many integers can be made?

Q4. How many odd numbers greater than 30000 can be formed from these digits
$2 \quad 4$
6
7
8
with no repetition of any digit?
(3 marks)

Section 1.3

Q1. Write this ratio in its simplest form $\sqrt{12}: \sqrt{48}: \sqrt{300}$

Q2. Write $\frac{5 \sqrt{2}}{3 \sqrt{6}-7}$ in the form $\sqrt{w}+\sqrt{k} \quad$ where w and k are integers.
(5 marks)

Q3. Write $\sqrt{500}-2 \sqrt{45} \quad$ in the form a $a \sqrt{5}$ where a is an integer.
(2 marks)

Q4. Solve $y(\sqrt{3}-1)=8$
Give your answer in the form $a+b^{\sqrt{3}} \quad$ where a and b are integers.
(4 marks)

Q5. Solve $\sqrt{125}+\sqrt{20}=\sqrt{80}+\sqrt{x}$
(3 marks)

Q6. Simplify fully $\frac{24-\sqrt{300}}{4 \sqrt{3}-5} \quad$ Give your answer in the form $a \sqrt{b} \quad$ where a and b are integers
(5 marks)
Q7. Solve $(3-\sqrt{x})^{\frac{1}{3}}=-2$
(3 marks)

Q8. Write $(1+2 \sqrt{5})(4-\sqrt{5})$ in the form $a+b \sqrt{5}$ where a and b are integers. (2 marks)

Q9. A linear sequence has first term $7+12 \sqrt{5}$

$$
\text { add } \quad 9-2 \sqrt{5}
$$

The term-to-term rule is
One term of the sequence is an integer. Work out the value of this integer.

Q10. Rationalise the denominator and simplify fully $\frac{21-11 \sqrt{5}}{3-\sqrt{5}}$
(4 marks)

Q11. Rationalise and simplify fully $\frac{\sqrt{3}}{3+\sqrt{3}}$

Q12. Rationalise and simplify $\frac{\sqrt{3}-7}{\sqrt{3}+1}$
Give your answer in the form $a+b \sqrt{3} \quad$ where a and b are integers.

Q13. Simplify $\sqrt{3}(\sqrt{75}+\sqrt{48})$ writing your answer as an integer.

Q14. Simplify fully $\frac{\sqrt{600}-\sqrt{54}}{\sqrt{24}}$

Q15. $\quad A B C$ is a triangle. The perpendicular from A meets $B C$ at D.
$B C=(6+2 \sqrt{7}) \mathrm{cm}$

Area of triangle $A B C=(13+3 \sqrt{7}) \mathrm{cm}^{2}$
Work out the length, in cm, of $A D$.
Give your answer in the form $a+b \sqrt{c} \quad$ where a, b and c are integers.

