5 MATRICES - Further Maths

Section 5.1

Q1. $\quad \mathbf{A}=\left(\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right) \quad \mathbf{B}=\binom{5}{4} \quad$ Work out the matrix $\mathbf{A B}$.
(2 marks)

Q2. Work out $\left(\begin{array}{cc}5 & -3 \\ 1 & 2\end{array}\right)\left(\begin{array}{cc}2 & -3 \\ -1 & 5\end{array}\right)$
(2 marks)

Q3. Work out $3\left(\begin{array}{ll}4 & 2 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}2 & 0 \\ -1 & 5\end{array}\right) \quad$ Give your answer as a single matrix.

Q4. Given that $\quad\left(\begin{array}{cc}3 & -1 \\ 2 & 1\end{array}\right)\binom{a}{b}=\binom{b}{a+1}$ work out the values of a and b. (5 marks)

Q5. $4\binom{1-2 a}{a}=\binom{b}{12} \quad$ Work out the values of a and b. (3 marks)

Q6. $\mathbf{A}=\left(\begin{array}{cc}4 & -1 \\ -7 & 2\end{array}\right) \quad \mathbf{B}=\binom{s}{-5} \quad \mathbf{C}=\binom{-1}{t} \quad \mathrm{D}=\left(\begin{array}{ll}2 & 1 \\ 7 & u\end{array}\right) \quad s, t$ and u are constants.
(a) $\mathbf{A B}=\mathbf{C}$

Work out the values of s and t.
(b) $\mathrm{AD}=\mathrm{I}$

Work out the value of u.
Q7. $\left(\begin{array}{cc}7 & a^{2} \\ b & -5\end{array}\right)\binom{2}{a}=\binom{78}{12} \quad$ Work out the values of a and b.

Section 5.2

Q1. $\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)\left(\begin{array}{cc}a & b \\ 0 & 0.4\end{array}\right)=k I$
where k is a constant and I is the identity matrix.
Work out the values of a and b.

Q2. $\left(\begin{array}{cc}m & -1 \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}2 & 2 \\ -2 & -1\end{array}\right)=1$ where I is the identity matrix.

Work out the value of m.
(2 marks)

Q3. $\mathbf{M}=\left(\begin{array}{cc}-2 & -1 \\ 3 & 1\end{array}\right)$ Show that $\quad \mathbf{M}^{3}=\mathbf{I}$

Section 5.3-5.4

Q1. $A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad$ Describe geometrically the single transformation represented by \mathbf{A}.

Q2. Describe fully the single transformation represented by the matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$

Q3. Under the transformation represented by $\left(\begin{array}{cc}-1 & -3 \\ 2 & 4\end{array}\right)$, the image of point $P(a, 2)$ is point Q. Can point Q be the same as point P ? You must show your working. (4 marks)

Q4. The transformation matrix $\left(\begin{array}{cc}2 a & b \\ -b & -a\end{array}\right)$ maps the point $(3,4)$ onto the point $(8,-7)$ Work out the values of a and b.

Q5. $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ represents a reflection in the y-axis.
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ represents a reflection in the line $y=x$
Work out the matrix that represents a reflection in the y-axis followed by a reflection in the line $y=x$
(2 marks)

Q6. The unit square $O A B C$ has vertices

$$
O(0,0) \quad A(1,0) \quad B(1,1) \quad C(0,1)
$$

(a) $O A B C$ is mapped to $O A^{\prime} B^{\prime} C^{\prime}$ under transformation matrix \mathbf{M}.

Work out matrix M.
(b) $O A B C$ is mapped to $O A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ under transformation matrix $\left(\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right)$

Draw and label $O A " B^{\prime \prime} C^{\prime \prime}$ on the diagram below.

Q7.
$B=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
Describe geometrically the single transformation represented by \mathbf{B}^{2}

Q8.
The transformation matrix \mathbf{Q} is $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
The transformation matrix \mathbf{R} is $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
Describe fully the single transformation represented by the matrix QR.

Q9.

The transformation matrix \mathbf{P} represents a 90° anti-clockwise rotation about the origin.
Describe fully the single transformation represented by the matrix \mathbf{P}^{3}

Q10.

Shape A maps to shape B by an enlargement, scale factor 3 , centre the origin.
Shape B maps to shape C by a rotation through 180°, centre the origin.
Shape A can be mapped to shape C by a single transformation.
Use matrices to show that the single transformation is an enlargement, centre the origin.
State the scale factor of the enlargement.

Q11.
The transformation matrix \mathbf{M} represents a 90° clockwise rotation about the origin.
(a) Write down the matrix \mathbf{M}.

$$
\mathbf{M}=\left(\begin{array}{ll}
- & - \\
- & -
\end{array}\right)
$$

(b) Describe fully the single transformation represented by \mathbf{M}^{2}.
(c) Write down the matrix for the single transformation represented by \mathbf{M}^{2}.

$$
\mathrm{M}^{2}=\left(\begin{array}{ll}
- & - \\
- & -
\end{array}\right)
$$

