5 MATRICES - Further Maths

Jump to:
Section 5.1
Section 5.2
Section 5.3 - 5.4

Section 5.1

Mark schemes

Q1.

Answer	Mark	Comments
$\binom{10}{17}$	B2	B1 For each component
$\binom{10+0}{5+12}$		
scores B1		

Q2.

Answer	Mark	Comments
$\left(\begin{array}{cc}13 & -30 \\ 0 & 7\end{array}\right)$	B2	B1 two correct elements

Additional Guidance	
Correct elements must be in their correct positions	

Q3.

Answer	Mark	Comments
Alternative method 1	Starts by multiplying 1st matrix by 3	
$\left(\begin{array}{cc}12 & 6 \\ 3 & 0\end{array}\right)$	B1	brackets may be missing but values must be in correct position in a 2 by 2 array
At least two values correct from evaluation of	M1	brackets may be missing but values must be in correct position in a 2 by 2 array

their $\left(\begin{array}{cc}12 & 6 \\ 3 & 0\end{array}\right) \times\left(\begin{array}{cc}2 & 0 \\ -1 & 5\end{array}\right)$		multiplication of matrices must be in the order shown
$\left(\begin{array}{cc}18 & 30 \\ 6 & 0\end{array}\right)$	A1ft	must have brackets $\mathrm{ft} \mathrm{B0M1}$

| Alternative method 2 | Starts by multiplying the matrices | |
| :--- | :---: | :--- | :--- |
| $\left(\begin{array}{ll}6 & 10 \\ 2 & 0\end{array}\right)$ | M1 | brackets may be missing but
 values must be in correct
 position in a 2 by 2 array |
| $\left(\begin{array}{ll}6 & 10 \\ 2 & 0\end{array}\right)$ | A1 | brackets may be missing but
 values must be in correct
 position in a 2 by 2 array |
| $\left(\begin{array}{cc}18 & 30 \\ 6 & 0\end{array}\right)$ | B1ft | must have brackets
 ft $3 \times$ their $\left(\begin{array}{ll}6 & 10 \\ 2 & 0\end{array}\right)$
 $\left(\begin{array}{ll}6 & 10 \\ 2 & 0\end{array}\right)$ |

Additional Guidance	
Alt $1\left(\begin{array}{cc}12 & 6 \\ 3 & 0\end{array}\right)\left(\begin{array}{cc}2 & 0 \\ -1 & 5\end{array}\right)=\left(\begin{array}{cc}18 & 42 \\ 6 & 8\end{array}\right)$	B1M1A0ft
Alt $1\left(\begin{array}{cc}12 & 6 \\ 3 & 0\end{array}\right)\left(\begin{array}{cc}2 & 0 \\ -1 & 5\end{array}\right)=\left(\begin{array}{cc}24 & 35 \\ 4 & 0\end{array}\right)$	B1M0A0ft
Alt $1\left(\begin{array}{cc}12 & 6 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}2 & 0 \\ -1 & 5\end{array}\right)=\left(\begin{array}{ccc}18 & 30 \\ 2 & 0\end{array}\right)$	B0M1A1ft
Alt $1\left(\begin{array}{ll}7 & 5 \\ 4 & 3\end{array}\right)\left(\begin{array}{cc}2 & 0 \\ -1 & 5\end{array}\right)=\left(\begin{array}{cc}14 & 25 \\ 5 & 20\end{array}\right)$	B0M1A0ft
Alt $2\left(\begin{array}{cc}6 & 10 \\ 1 & 5\end{array}\right)$ with answer $\left(\begin{array}{cc}18 & 30 \\ 3 & 15\end{array}\right)$	M1A0B1ft
Alt $2\left(\begin{array}{cc}8 & 0 \\ -1 & 0\end{array}\right)$ with answer $\left(\begin{array}{cc}24 & 0 \\ -3 & 0\end{array}\right)$	MOA0B1ft
Alt $2\left(\begin{array}{cc}8 & 0 \\ -1 & 0\end{array}\right)$ with answer $\left(\begin{array}{cc}24 & 0 \\ -1 & 0\end{array}\right)$	MOAOBOft
For the final mark allow if there is intention to enclose the correct	

elements in brackets	
Responses that start by multiplying 2nd matrix by 3 should be marked using the principles of Alt 1	
Multiplying both matrices by 3 can score a maximum of B1	
$\left(\begin{array}{cc}12 & 6 \\ 3 & 0\end{array}\right)$ or $\left(\begin{array}{cc}6 & 0 \\ -3 & 15\end{array}\right)$	B1M0A0ft

Q4.

Answer	Mark	Comments
$3 a-b$ or $2 a+b$ seen	M 1	oe
$3 a-b=b$	M 1	oe
$2 a+b=a+1$	M 1	oe
$a=\frac{2}{5}$	A 1	
$b=\frac{3}{5}$	A 1	

Q5.

Answer	Mark	Comments
Alternative method 1		B 1
$a=3$	M 1	oe eg $4 \times 1+-2 a \times 4=b$
$4-8 a=b$ or		
$4(1-2 a)=b$		
$b=-20$	A 1 ft	ft from B0 M1

Alternative method 2

$a=3$	B 1	
$\binom{4-8 a}{4 a}$	B 1	Condone no brackets but do not condone a fraction
$b=-20$	B 1 ft	ft from B0 B1

Additional Guidance

Q6.
(a)

Answer	Mark	Comments
$4 s+5=-1$ or $-7 s-10=t$	M 1	oe equation
$s=-1.5$	A 1	
$t=0.5$	A 1 ft	$\mathrm{ft}-7 \times$ their $s-10$

(b)

4	A1	

Q7.

Answer	Mark	Comments
$14+a^{3}=78$	M1	oe eg $a^{3}=64$
or		
$2 b-5 a=12$		or $2 b+-5 a=12$ or allow eg $7 \times 2+a^{2} \times a$ for $14+$ a^{3} $2 b-5 a=12$ or $14+a^{3}$ and $2 b-5 a$
$a=4$ allow eg $2 \times b-5 \times a$ for $2 b-$ $5 a$		
$\frac{12+5 \times \text { their } a}{2}$ correctly	A1ft	accept an exact value or a value rounded to 1 dp or better

Additional Guidance	
$\binom{14+a^{3}}{2 b-5 a}$ or $\left(14+a^{3}, 2 b-5 a\right)$ with or without brackets	M1
$a=4(\mathrm{M} 1$ is implied)	M1A1
M1 for $2 b-5 a=12$ is implied by an incorrect value for a with a correct ft answer for b	M1A0A1ft

eg $a=8 b=26$	
An incorrect but exact value for a seen in working (eg rounded value for a on answer line (eg 2.6) Allow a ft for b from the exact or the rounded value	
$a=4$ and -4 with one or both of $b=16$ and -4	M1A0A1ft
$a=4$ and -4 (no values for b or incorrect values for b)	M1A0A0ft

Section 5.2

Mark schemes

Q1.

Answer	Mark	Comments
$\left[\begin{array}{ll}2 a & 2 b+0.4 \\ 0 & 1.2\end{array}\right]$	M1	oe
or $2 a=k$ or $k=1.2$		
or $2 b+0.4=0$		

position

could be implied from second M

mark\end{array}\right] .\)| $2 a=k$
 and
 $2 b+0.4=0$ | M1dep | oe eg $2 a=1.2$ and $2 b+0.4=0$ |
| :--- | :--- | :--- |
| $a=0.6$ or $b=-0.2$ | M1 | oe |
| $a=0.6$ and $b=-0.2$ | A 1 | oe |

Q2.

Answer	Mark	Comments
$2 m+2=1$	M1	oe equation or calculation
or $2 m+1=0$		
or $\frac{1-2}{2}$		
or		

| $\left(\begin{array}{cc}2 m+2 & 2 m+1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ | | |
| :---: | :---: | :--- | :--- |
| $-\frac{1}{2}$ or -0.5 | A 1 | |

Additional Guidance	
Condone missing brackets in $\left(\begin{array}{cc}2 m+2 & 2 m+1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	
Allow $\left(\begin{array}{cc}2 m+2 & 2 m+1 \\ 2-2 & 2-1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	M1, A1
Mark positively eg error in matrix multiplication but $2 m+2=1$ and answer -0.5	
More than one answer given is A0 eg $m+2=1$ Answer -1\quad and $2 m+1=0$ (mark positively) -0.5	M1

Q3.

Answer	Mark	Comments
$\left(\begin{array}{cc}1 & 1 \\ -3 & -2\end{array}\right)$	B2	B1 2 by 2 matrix with at least two elements correct
their $\left(\begin{array}{cc}1 & 1 \\ -3 & -2\end{array}\right)(\times)\left(\begin{array}{cc}-2 & -1 \\ 3 & 1\end{array}\right)$	M1	Multiplication can be in either order if their $\left(\begin{array}{cc}1 & 1 \\ -3 & -2\end{array}\right)$ is a 2 by 2 matrix Do not award if their $\left(\begin{array}{cc}1 & 1 \\ -3 & -2\end{array}\right)$ is \mathbf{M}
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	A1	Must have B2 with M1 seen

Section 5.3-5.4

Mark schemes

Q1.

Answer	Mark	Comments
Reflection in the x-axis	B1	
or		
reflection in $y=0$		

Additional Guidance	
Reflect(ed) in the x-axis	B1
Do not allow if there is additional incorrect information	
eg1 Reflection in the x-axis about the origin	B0
eg2 Reflection in the x-axis and rotated	B0
Reflection	B0

Q2.

Answer	Mark	Comments
Rotation, through 90° (anticlockwise), about O or Rotation, through 270 clockwise, about O	B3	B1 for each part
$\mathrm{SC} 1\binom{1}{0} \rightarrow\binom{0}{1}$ or		
$\binom{0}{1} \rightarrow\binom{-1}{0}$ or		
$\left(\begin{array}{cc}\cos 90 & -\sin 90 \\ \sin 90 & \cos 90\end{array}\right)$		

Q3.

Answer	Mark	Comments
$\left(\begin{array}{cc}-1 & -3 \\ 2 & 4\end{array}\right)\binom{a}{2}$ or $\binom{-a-6}{2 a+8}$	M1	Allow $(-a-62 a+8)$
$-a-6=a$ or $2 a+8=2$	M1	oe linear equation(s) (not $a=-3)$ Implies M1 M1
$-a-6=a$ and $2 a+8=2$	A1	oe equations (not $a=-3)$
Shows both equations have a common solution $(\mathrm{a}=-3)$ and		$\mathrm{ft} \mathrm{M1} \mathrm{M1} \mathrm{A0}$

| Yes A1ft | Must show that their two linear
 equations do not have a
 common solution and No
 SC4
 $\left(\begin{array}{cc}-1 & -3 \\ 2 & 4\end{array}\right)\binom{-3}{2}=\binom{-3}{2}$
 Yes
 and
 $\left(\begin{array}{cc}-1 & -3 \\ 2 & 4\end{array}\right)\binom{-3}{2}=\binom{-3}{2}$
 SC3 |
| :---: | :---: | :--- |

Additional Guidance	
$\binom{a}{2}\left(\begin{array}{cc}-1 & -3 \\ 2 & 4\end{array}\right)$ is first M0 unless recovered	
In matrices, allow missing brackets or inclusion of 'fraction' lines	
Only one equation can score a maximum of M1 M1 A0 A0	
$a=-3$ with no correct working	Zero
$\binom{-a-6}{2 a+8}=\binom{a}{2}$ with no further valid work	M1 M0 A0 AO
The final A mark may be seen in various ways eg1 Solves both equations obtaining $a=-3$ each time and Yes (or shows that both equations simplify to $2 a=-6$ and Yes) eg2 Solves one equation obtaining $a=-3$ and shows by substitution that $a=-3$ satisfies the other equation and Yes eg3 Adds the two equations to obtain a correct statement and Yes $\begin{array}{r} -2 a-6=0 \\ 2 a+8=2 \\ 2=2 \end{array}$	

Q4.

Answer	Mark	Comments
$\left(\begin{array}{rr}2 a & b \\ -b & -a\end{array}\right)\binom{3}{4}=\left[\begin{array}{c}8 \\ -7\end{array}\right)$	M1	

Additional Guidance	
Matrices wrong way round can be recovered by correct equations in second M	
Point written as coordinates rather than a matrix can be recovered by correct equations in second M	
a or b correct with no incorrect working	$\mathrm{M} 1, \mathrm{M} 1$, $\mathrm{M} 1, \mathrm{~A} 1$, A0

Q5.

Answer	Mark	Comments
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$	M 1	$\binom{1}{0} \rightarrow\binom{-1}{0} \rightarrow\binom{0}{-1}$ or
$\binom{0}{1} \rightarrow\binom{0}{1} \rightarrow\binom{1}{0}$		
$\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$	A1	$\mathrm{SC} 1\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$

Q6.
(a)

Answer	Mark	Comments
$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$	B2	B1 Rotation 180° (about/centre O) or indication that $\binom{1}{0} \rightarrow\binom{-1}{0}$ or indication that $\binom{0}{1} \rightarrow\binom{0}{-1}$ or $\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)(\times)\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$ or $\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)(\times)\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)$ or reflection in $y=-x$ and $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$

(b)

Correct square (vertices O, $A^{\prime \prime}(-3,0) B^{\prime \prime}(-3,-3)$ and C $(0,-3))$ with correct labelling	B3	B2 Correct square with incorrect or no labelling or correct points plotted with correct labelling B1 3 by 3 square in wrong position (ignore labelling)

| or
 correct points plotted with
 incorrect or no labelling
 or
 enlargement scale factor -3
 (centre O)
 or
 $\left(\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right)\binom{1}{0}=\binom{-3}{0}$ or
 $\left(\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right)\binom{1}{1}=\binom{-3}{-3}$ or
 $\left(\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right)\binom{0}{1}=\binom{0}{-3}$ |
| :--- | :--- |

Q7.

Answer	Mark	Comments		
$\begin{array}{l}\text { Rotation through } 180^{\circ} \text { centre } \\ \text { the origin } \\ \text { or } \\ \text { enlargement scale factor -1 } \\ \text { centre the origin }\end{array}$	B2	B1 $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$		
or				
enlargement scale factor - 1				
or				
rotation through 180			$]$	or
:---				
indication that B represents				
rotation through 270				
(anticlockwise centre the origin)				
or				
indication that B represents				
rotation through 90° clockwise				
(centre the origin)				

Additional Guidance	
For B2 ignore any reference to clockwise or anticlockwise rotation	
Condone omission of degrees symbol throughout eg B is rotation through 270	B1

Mark intention	
eg1 Rotate(d) 180 about o	B2
eg2 Enlarge(d) sf -1	B1
Allow rotation through 540 centre the origin	B2
Do not allow if there is additional information that is incorrect	
eg1 Rotation through 180° and a reflection	B0
eg2 Enlargement sf -1 rotated through 90°	B2
eg3 Rotation through 180° centre the origin so the shape turns	B0
Rotation	B0
Enlargement	
Do not allow turn for rotation	
Do not allow eg half turn for 180°	
Do not allow negative enlargement	

Q8.

Answer	Mark	Comments
Rotation and 180 and centre O	B2	oe
or		B1 Rotation and 180 or
Enlargement and scale factor		Enlargement and scale factor -1 or -1 and centre O
		$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$

Additional Guidance	
Response that is not a single transformation is always B0 unless they give the two possible B2 answers	
Rotation through 180 clockwise about O	B2
Rotation through 180 anti-clockwise about O	B2
For B2 or B1 ignore a circular arrow as direction not required	
Do not allow half turn or turn	B0
eg1 Half turn	B0

$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ from multiplying given matrices in either order	B1		
Allow matrix to have brackets missing and/or commas but must be 2 by 2 array			
$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ scores B1 even if description of transformation is			
incorrect		\quad	$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ seen followed by multiplication of matrix by a vector is
:---:			
not a choice			

Q9.

Answer	Mark	Comments
Rotation and 270 (anti- clockwise) and centre O	B2	oe
or		B1 270 (anti-clockwise) or 90 clockwise Rotation and 90 clockwise and centre O

Additional Guidance	B1
270 is anti-clockwise by default so 'anti-clockwise' not required for B2 or B1	B1
270	B0
270 clockwise	B0
Response that is not a single transformation is always B0 eg Rotation, 270 (anti-clockwise), centre O Scale factor 3 (enlargement)	B0
Reflection 270 (anti-clockwise)	B0
Rotation and 270 clockwise and centre O	B0
Turn 90 clockwise centre O (B1 for 90 clockwise)	B0
Do not allow a circular arrow for clockwise direction eg 90 with circular arrow indicating clockwise	Do not allow quarter turn etc eg Quarter turn clockwise

Q10.

Answer	Mark	Comments
Alternative method 1		
$\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$ or $3^{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)}$	B1	
$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$	B1	
$\text { their }\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$ (x) their $\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)$	M1	Either order This mark cannot be implied Must have scored B1 or B2
$\begin{aligned} & \left(\begin{array}{cc} -3 & 0 \\ 0 & -3 \end{array}\right) \text { or }-3 \\ & \left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \\ & \text { or } \left.3 \begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) \end{aligned}$	M1dep	Correctly multiplies their pair of 2 by 2 matrices
$\begin{aligned} & \left(\begin{array}{cc} -3 & 0 \\ 0 & -3 \end{array}\right) \text { or }-3\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \\ & \text { or } \left.3 \begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) \end{aligned}$ and scale factor -3	A1	Must gain B1 B1 M1 M1

Alternative method 2	Algebraic method		
$\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right) \quad$ or 3	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	B 1	
$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$	B 1		
their $\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)\binom{x}{y}$	their $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)(\mathrm{x})$ $\binom{x}{y}=\binom{-x}{-y}$	M 1	This mark cannot be implied Must have scored B1 or B2 Multiplications must be correctly worked out

$\begin{array}{\|l\|l\|} \hline \text { their }\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) \\ (x) \text { their }\binom{3 x}{3 y}= & \text { their }\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right) \\ \binom{-3 x}{-3 y} & (x) \text { their }\binom{-x}{-y}= \\ \binom{-3 x}{-3 y} \end{array}$	M1dep	Multiplications must be correctly worked out
$\binom{-3 x}{-3 y}$ and scale factor -3	A1	Must gain B1 B1 M1 M1

Alternative method 3 Unit square method		
$\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$ or $3^{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)}$	B1	
$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$	B1	
$\begin{array}{ll} \text { their }\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)(x) & \text { their }\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) \\ \left(\begin{array}{lll} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right) & (x)\left(\begin{array}{lll} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right) \\ =\left(\begin{array}{lll} 3 & 0 & 3 \\ 0 & 3 & 3 \end{array}\right) & =\left(\begin{array}{ccc} -1 & 0 & -1 \\ 0 & -1 & -1 \end{array}\right) \end{array}$	M1	This mark cannot be implied Must have scored B1 or B2 Multiplications must be correctly worked out May be seen as three products
their $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ (x) their $\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)(x)$ their $\left(\begin{array}{lll}3 & 0 & 3 \\ 0 & 3 & 3\end{array}\right)$ $=$ $\left(\begin{array}{ccc}-3 & 0 & -3 \\ 0 & -3 & -3\end{array}\right)$$\left(\begin{array}{ccc}-1 & 0 & -1 \\ 0 & -1 & -1\end{array}\right)=$ $\left(\begin{array}{ccc}-3 & 0 & -3 \\ 0 & -3 & -3\end{array}\right)$	M1dep	Multiplications must be correctly worked out May be seen as three products
$\left(\begin{array}{ccc}-3 & 0 & -3 \\ 0 & -3 & -3\end{array}\right)$	A1	Must gain B1 B1 M1 M1 May be seen as three 2 by 1 matrices

\square

Additional Guidance	
If both matrices are incorrect	Zero
Matrices must be used - ignore diagrams	
In matrices, allow missing brackets or inclusion of 'fraction' lines	
Alt 1 B2 gained then $\left(\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right)$ stated	$\begin{aligned} & \text { B2 M0 } \\ & \text { M0 A0 } \end{aligned}$
Allow 'enlargement -3 ' for 'scale factor -3 ' Do not allow ' -3 ' for 'scale factor -3 '	
Scale factor -3 with no valid working	Zero
$\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)=\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right) \text { scores B1 but does not score M1 }$ M1 for the multiplication of two matrices with B1 scored	
Alt 3 May also see working for $\binom{0}{0}$	

Q11.

(a)

Answer	Mark	Comments
$\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$	B1	

(b)

Rotation of 180° about the origin	B2	B1 if either the 180° or the origin is missing
Enlargement SF -1 centre the origin	B1 if either the SF or the centre is missing	

Additional Guidance

Ignore any reference to direction Accept 'Rotation of half a turn' for B1

Answers of Rotation or Enlargement with no other description attached score B0

Rotation 90° is B 0 (incorrect angle, no centre of rotation)

Enlargement SF2 is B0 (incorrect SF and no centre of enlargement)
(c)

$\left(\begin{array}{cr}-1 & 0 \\ 0 & -1\end{array}\right)$	B1	

Additional Guidance

If no working or answer seen in (c), look at (b) ... the matrix for M^{2} might be written there, and, if correct, will score B1 in (c)

