<u>5 MATRICES – Further Maths</u>

Jump to: Section 5.1 Section 5.2 Section 5.3 - 5.4

Section 5.1

Mark schemes

Q1.

Answer	Mark	Comments
(10)	B2	B1 For each component
(17)		$\begin{pmatrix} 10 + 0 \\ 5 + 12 \end{pmatrix}$ scores B1

Q2.

Answer	Mark	Comments
$\begin{pmatrix} 13 & -30 \\ 0 & 7 \end{pmatrix}$	B2	B1 two correct elements

Additional Guidance	
Correct elements must be in their correct positions	

Q3.

Answer	Mark	Comments
Alternative method 1 Starts	s by multi	olying 1st matrix by 3
$\begin{pmatrix} 12 & 6 \\ 3 & 0 \end{pmatrix}$	B1	brackets may be missing but values must be in correct position in a 2 by 2 array
At least two values correct from evaluation of	M1	brackets may be missing but values must be in correct position in a 2 by 2 array

their $\begin{pmatrix} 12 & 6 \\ 3 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ -1 & 5 \end{pmatrix}$		multiplication of matrices must be in the order shown
(18 30)	A1ft	must have brackets
(6 0)		ft B0M1

Alternative method 2 Sta	Starts by multiplying the matrices		
$\begin{pmatrix} 6 & 10 \\ 2 & 0 \end{pmatrix}$	M1	brackets may be missing but values must be in correct position in a 2 by 2 array	
$\begin{pmatrix} 6 & 10 \\ 2 & 0 \end{pmatrix}$	A1	brackets may be missing but values must be in correct position in a 2 by 2 array	
$\begin{pmatrix} 18 & 30 \\ 6 & 0 \end{pmatrix}$	B1ft	must have brackets ft 3 × their $\begin{pmatrix} 6 & 10 \\ 2 & 0 \end{pmatrix}$ their $\begin{pmatrix} 6 & 10 \\ 2 & 0 \end{pmatrix}$ must be a 2 by 2 array	

Additional Guidance		
Alt 1 $\begin{pmatrix} 12 & 6 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 18 & 42 \\ 6 & 8 \end{pmatrix}$	B1M1A0ft	
Alt 1 $\begin{pmatrix} 12 & 6 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 24 & 35 \\ 4 & 0 \end{pmatrix}$	B1M0A0ft	
Alt 1 $\begin{pmatrix} 12 & 6 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 18 & 30 \\ 2 & 0 \end{pmatrix}$	B0M1A1ft	
Alt 1 $\begin{pmatrix} 7 & 5 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 14 & 25 \\ 5 & 20 \end{pmatrix}$	B0M1A0ft	
Alt 2 $\begin{pmatrix} 6 & 10 \\ 1 & 5 \end{pmatrix}$ with answer $\begin{pmatrix} 18 & 30 \\ 3 & 15 \end{pmatrix}$	M1A0B1ft	
Alt 2 $\begin{pmatrix} 8 & 0 \\ -1 & 0 \end{pmatrix}$ with answer $\begin{pmatrix} 24 & 0 \\ -3 & 0 \end{pmatrix}$	M0A0B1ft	
Alt 2 $\begin{pmatrix} 8 & 0 \\ -1 & 0 \end{pmatrix}$ with answer $\begin{pmatrix} 24 & 0 \\ -1 & 0 \end{pmatrix}$	M0A0B0ft	
For the final mark allow if there is intention to enclose the correct		

elements in brackets	
Responses that start by multiplying 2nd matrix by 3 should be marked using the principles of Alt 1	
Multiplying both matrices by 3 can score a maximum of B1	B1M0A0ft
$ \begin{pmatrix} 12 & 6 \\ 3 & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 6 & 0 \\ -3 & 15 \end{pmatrix} $	

Q4.

Answer	Mark	Comments
3 <i>a – b</i> or 2 <i>a</i> + <i>b</i> seen	M1	oe
3a - b = b	M1	oe
2a + b = a + 1	M1	oe
$a = \frac{2}{5}$	A1	
$b = \frac{3}{5}$	A1	

Q5.

Answer	Mark	Comments
Alternative method 1		
<i>a</i> = 3	B1	
4 - 8a = b or	M1	oe eg 4 × 1 + −2 <i>a</i> × 4 = <i>b</i>
4(1 - 2a) = b		
<i>b</i> = –20	A1ft	ft from B0 M1

Alternative method 2		
<i>a</i> = 3	B1	
$\begin{pmatrix} 4 - 8a \\ 4a \end{pmatrix}$	B1	Condone no brackets but do not condone a fraction
<i>b</i> = -20	B1ft	ft from B0 B1

Additional Guidance	
---------------------	--

alt 1 ... *a* = 12 B0, *b* = −92 M1 A1ft

Q6.

	Answer	Mark	Comments
(a)	4s + 5 = -1	M1	oe equation
	or $-7s - 10 = t$		
	<i>s</i> = −1.5	A1	
	<i>t</i> = 0.5	A1ft	ft −7 × their <i>s</i> − 10
(b)	4	A1	

Q7.

Answer	Mark	Comments
$14 + a^3 = 78$	M1	oe eg $a^3 = 64$
or		or 2 <i>b</i> + –5 <i>a</i> = 12
2b - 5a = 12		allow eg 7 × 2 + a^2 × a for 14 +
or		<i>a</i> ³
2b - 5a = 12		allow eg 2 × b – 5 × a for 2 b –
or		54
14 + <i>a</i> ³ and 2 <i>b</i> – 5 <i>a</i>		
<i>a</i> = 4	A1	
$\frac{12+5\times \text{theira}}{2} \text{ correctly} \\ \text{evaluated}$	A1ft	accept an exact value or a value rounded to 1 dp or better

Additional Guidance		
$\begin{pmatrix} 14+a^3\\2b-5a \end{pmatrix}$	M1	
or $(14 + a^3, 2b - 5a)$ with or without brackets		
a = 4 (M1 is implied)	M1A1	
M1 for $2b - 5a = 12$ is implied by an incorrect value for a with a correct ft answer for b	M1A0A1ft	

eg <i>a</i> = 8 <i>b</i> = 26		
An incorrect but exact value for a seen in rounded value for a on answer line (eg 2)	working (eg $\frac{8}{3}$) with a 6)	
Allow ft for b from the exact or the rounded	ed value	
a = 4 and -4 with one or both of $b = 16$ a	nd –4	M1A0A1ft
a = 4 and -4 (no values for b or incorrect	values for b)	M1A0A0ft

Section 5.2

Mark schemes

Q1.

Answer	Mark	Comments
$\begin{bmatrix} 2a & 2b + 0.4 \end{bmatrix}$	M1	oe
$\begin{bmatrix} 0 & 1.2 \end{bmatrix}$ or $2a = k$ or $k = 1.2$		any 3 terms correct in correct position
or $2b + 0.4 = 0$		could be implied from second M mark
2a = k	M1dep	oe eg $2a = 1.2$ and $2b + 0.4 = 0$
and		
2b + 0.4 = 0		
a = 0.6 or b = -0.2	M1	ое
a = 0.6 and $b = -0.2$	A1	ое

Q2.

Answer	Mark	Comments
2 <i>m</i> + 2 = 1	M1	oe equation or calculation
or $2m + 1 = 0$		
or $\frac{1-2}{2}$		
or		

$ \begin{pmatrix} 2m+2 & 2m+1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $		
$-\frac{1}{2}$ or -0.5	A1	

Additional Guidance	
Condone missing brackets in $\begin{pmatrix} 2m+2 & 2m+1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	
Allow $ \begin{pmatrix} 2m+2 & 2m+1 \\ 2-2 & 2-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	
Mark positively	
eg error in matrix multiplication but $2m + 2 = 1$ and answer -0.5	M1, A1
More than one answer given is A0	
eg $m + 2 = 1$ and $2m + 1 = 0$ (mark positively)	M1
Answer −1 and −0.5	A0

Q3.

Answer	Mark	Comments
$\begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix}$	B2	B1 2 by 2 matrix with at least two elements correct
their $\begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix}$ (x) $\begin{pmatrix} -2 & -1 \\ 3 & 1 \end{pmatrix}$	M1	Multiplication can be in either order if their $\begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix}$ is a 2 by 2 matrix Do not award if their $\begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix}$ is M
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	A1	Must have B2 with M1 seen

Section 5.3 – 5.4 Mark schemes

Q1.

Answer	Mark	Comments
Reflection in the <i>x</i> -axis	B1	
or		
reflection in $y = 0$		

Additional Guidance		
Reflect(ed) in the <i>x</i> -axis	B1	
Do not allow if there is additional incorrect information		
eg1 Reflection in the <i>x</i> -axis about the origin		
eg2 Reflection in the <i>x</i> -axis and rotated		
Reflection	B0	

Q2.

Answer	Mark	Comments
Rotation, through 90° (anticlockwise), about <i>O</i> or	B3	B1 for each part SC1 $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ or
Rotation, through 270° clockwise, about <i>O</i>		$\begin{pmatrix} 0\\1 \end{pmatrix} \rightarrow \begin{pmatrix} -1\\0 \end{pmatrix} \text{ or }$ $\begin{pmatrix} \cos 90 & -\sin 90\\\sin 90 & \cos 90 \end{pmatrix}$

Q3.

Answer	Mark	Comments
$\begin{pmatrix} -1 & -3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} a \\ 2 \end{pmatrix} \text{ or } \begin{pmatrix} -a-6 \\ 2a+8 \end{pmatrix}$	M1	Allow (- <i>a</i> - 6 2 <i>a</i> + 8)
-a - 6 = a or 2a + 8 = 2	M1	oe linear equation(s) (not $a = -3$)
		Implies M1 M1
-a - 6 = a and $2a + 8 = 2$	A1	oe equations (not $a = -3$)
Shows both equations have a common solution (a = -3) and		ft M1 M1 A0

Yes	A1ft	Must show that their two linear equations do not have a common solution and No
		SC4 $\begin{pmatrix} -1 & -3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$ and Yes
		$SC3 \begin{pmatrix} -1 & -3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$

Additional Guidance		
$\begin{pmatrix} a \\ 2 \end{pmatrix} \begin{pmatrix} -1 & -3 \\ 2 & 4 \end{pmatrix}$ is first M0 unless recovered		
In matrices, allow missing brackets or inclusion of 'fraction' lines		
Only one equation can score a maximum of M1 M1 A0 A0		
a = -3 with no correct working	Zero	
$\begin{pmatrix} -a-6\\ 2a+8 \end{pmatrix} = \begin{pmatrix} a\\ 2 \end{pmatrix}$ with no further valid work	M1 M0 A0 A0	
The final A mark may be seen in various ways		
eg1 Solves both equations obtaining $a = -3$ each time and Yes (or shows that both equations simplify to $2a = -6$ and Yes)		
eg2 Solves one equation obtaining $a = -3$ and shows by substitution that $a = -3$ satisfies the other equation and Yes		
eg3 Adds the two equations to obtain a correct statement and Yes		
$\frac{-2a - 6 = 0}{2a + 8 = 2}$ $2 = 2$		

Q4.

Answer	Mark	Comments
$ \begin{pmatrix} 2a & b \\ -b & -a \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 8 \\ -7 \end{pmatrix} $	M1	

6 <i>a</i> + 4 <i>b</i> = 8	M1dep	oe allow these to be written as a matrix equation
and $-3b - 4a = -7$		in all likelihood this will imply M2
		as the matrices may not be seen
Solve eg		oe
12 <i>a</i> + 8 <i>b</i> = 16		
and $-12a - 9b = -21$		for making coefficients of a or b equal
or		
18 <i>a</i> + 12 <i>b</i> = 24		
and $-16a - 12b = -28$		
		dependent on first M1 only
or substitution eg		
8-4b	M1dep	oe
a = 6		
<u>-4 (8 - 4b)</u> - 3b = -7		
and <mark>6</mark>		
or		
4-3a		
<i>b</i> = 2		
3(4-3a) = -7		
and -4 <i>a</i> - 2		
<i>a</i> = -2 or <i>b</i> = 5	A1	
<i>a</i> = −2 and <i>b</i> = 5	A1	

Additional Guidance	
Matrices wrong way round can be recovered by correct equations in second M	
Point written as coordinates rather than a matrix can be recovered by correct equations in second M	
a or b correct with no incorrect working	M1, M1,
	M1, A1, A0

Q5.

Answer	Mark	Comments
$ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} $	M1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ -1 \end{pmatrix} \text{ or }$
		$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	A1	SC1 $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Q6.

	Answer	Mark	Comments
(a)	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	B2	B1 Rotation 180° (about/centre <i>O</i>)
			or
			indication that $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 \\ 0 \end{pmatrix}$
			or
			indication that $\begin{pmatrix} 0\\1 \end{pmatrix} \rightarrow \begin{pmatrix} 0\\-1 \end{pmatrix}$
			or
			$ \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} (\times) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $
			or
			$ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} (\times) \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} $
			or
			reflection in $y = -x$ and $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
(b)	Correct square (vertices O , A " (-3, 0) B " (-3, -3) and C "	B3	B2 Correct square with incorrect or no labelling
	(0, -3)) with correct labelling		or
			correct points plotted with correct labelling
			B1 3 by 3 square in wrong position (ignore labelling)

or correct points plotted with incorrect or no labelling
or
enlargement scale factor −3 (centre O)
or
$\begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \end{pmatrix}_{or}$
$\begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -3 \end{pmatrix} $ or
$ \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \end{pmatrix} $

Q7.

Answer	Mark	Comments
Rotation through 180° centre the origin	B2	B1 $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
or		or
enlargement scale factor –1 centre the origin		enlargement scale factor – 1
		or
		rotation through 180°
		or
		indication that B represents rotation through 270° (anticlockwise centre the origin)
		or
		indication that B represents rotation through 90° clockwise (centre the origin)

Additional Guidance	
For B2 ignore any reference to clockwise or anticlockwise rotation	
Condone omission of degrees symbol throughout	
eg B is rotation through 270	

Mark intention		
eg1 Rotate(d) 180 about o		
eg2 Enlarge(d) sf –1	B1	
Allow rotation through 540 centre the origin	B2	
Do not allow if there is additional information that is incorrect		
eg1 Rotation through 180° and a reflection		
eg2 Enlargement sf –1 rotated through 90°		
eg3 Rotation through 180° centre the origin so the shape turns		
Rotation		
Enlargement		
Do not allow turn for rotation		
Do not allow eg half turn for 180°		
Do not allow negative enlargement		

Q8.

Answer	Mark	Comments
Rotation and 180 and centre	B2	oe
0		B1 Rotation and 180 or
or		Enlargement and scale factor -1
Enlargement and scale factor		or
-1 and centre O		(-1 0)
		0 -1)

Additional Guidance	
Response that is not a single transformation is always B0 unless they give the two possible B2 answers	
Rotation through 180 clockwise about O	B2
Rotation through 180 anti-clockwise about O	
For B2 or B1 ignore a circular arrow as direction not required	
Do not allow half turn or turn	
eg1 Half turn	B0
eg2 Turn 180	B0

$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ from multiplying given matrices in either order	B1
Allow matrix to have brackets missing and/or commas but must be 2 by 2 array	
$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ scores B1 even if description of transformation is incorrect	
$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ seen followed by multiplication of matrix by a vector is not a choice	B1

Q9.

Answer	Mark	Comments
Rotation and 270 (anti- clockwise) and centre <i>O</i> or	B2	oe B1 270 (anti-clockwise) or 90 clockwise
Rotation and 90 clockwise and centre O		Do not allow if reflection or translation or enlargement also stated

Additional Guidance	
270 is anti-clockwise by default so 'anti-clockwise' not required for B2 or B1	B1
270	B1
270 clockwise	B0
Response that is not a single transformation is always B0	B0
eg Rotation, 270 (anti-clockwise), centre O Scale factor 3 (enlargement)	
Reflection 270 (anti-clockwise)	B0
Rotation and 270 clockwise and centre O	B0
Turn 90 clockwise centre O (B1 for 90 clockwise)	B1
Do not allow a circular arrow for clockwise direction	B0
eg 90 with circular arrow indicating clockwise	
Do not allow quarter turn etc	B0
eg Quarter turn clockwise	

Answer	Mark	Comments
Alternative method 1		
$ \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $ or 3	B1	
$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	B1	
(-1 0)		Either order
their $\begin{pmatrix} 0 & -1 \end{pmatrix}$ (x) their	M1	This mark cannot be implied
$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$		Must have scored B1 or B2
$\begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \text{or } -3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	M1dep	Correctly multiplies their pair of 2 by 2 matrices
or 3 $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$		
$\begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \text{ or } -3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	A1	Must gain B1 B1 M1 M1
or 3 $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$		

and scale factor -3

Alternative method 2 Algebraic m	nethod	
$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \text{ or } 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	B1	
$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	B1	
their $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ their $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} (x)$ = $\begin{pmatrix} 3x \\ 3y \end{pmatrix}$ $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$	M1	This mark cannot be implied Must have scored B1 or B2 Multiplications must be correctly worked out

Q10.

their $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ their $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ (x) their $\begin{pmatrix} 3x \\ 3y \end{pmatrix}$ (x) their $\begin{pmatrix} -x \\ -y \end{pmatrix}$ = $\begin{pmatrix} -3x \\ -3y \end{pmatrix}$ $\begin{pmatrix} -3x \\ -3y \end{pmatrix}$	M1dep	Multiplications must be correctly worked out
$\begin{pmatrix} -3x \\ -3y \end{pmatrix}$ and scale factor -3	A1	Must gain B1 B1 M1 M1

Alternative method 3 Unit square	method	
$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	B1	
$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	B1	
their $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ (x) their $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (x) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ $= \begin{pmatrix} 3 & 0 & 3 \\ 0 & 3 & 3 \end{pmatrix}$ $= \begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix}$	M1	This mark cannot be implied Must have scored B1 or B2 Multiplications must be correctly worked out May be seen as three products
$\begin{array}{c cccc} \text{their} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} & \text{their} \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} (x) \\ \text{their} \begin{pmatrix} 3 & 0 & 3 \\ 0 & 3 & 3 \end{pmatrix} \\ \text{their} \begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix} = \\ \begin{pmatrix} -3 & 0 & -3 \\ 0 & -3 & -3 \end{pmatrix} & \begin{pmatrix} -3 & 0 & -3 \\ 0 & -3 & -3 \end{pmatrix} \end{array}$	M1dep	Multiplications must be correctly worked out May be seen as three products
$\begin{pmatrix} -3 & 0 & -3 \\ 0 & -3 & -3 \end{pmatrix}$	A1	Must gain B1 B1 M1 M1 May be seen as three 2 by 1 matrices

and scale factor –3	

Additional Guidance	
If both matrices are incorrect	Zero
Matrices must be used - ignore diagrams	
In matrices, allow missing brackets or inclusion of 'fraction' lines	
$\begin{pmatrix} -3 & 0 \end{pmatrix}$	B2 M0
Alt 1 B2 gained then $\begin{bmatrix} 0 & -3 \end{bmatrix}$ stated	M0 A0
Allow 'enlargement –3' for 'scale factor –3'	
Do not allow '–3' for 'scale factor –3'	
Scale factor –3 with no valid working	Zero
$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} $ scores B1 but does not score M1 M1 for the multiplication of two matrices with B1 scored	
Alt 3 May also see working for	

Q11.

	Answer	Mark	Comments
(a)	0 1	B1	
	[-1 0]		

(b)	Rotation of 180° about the origin	B2	B1 if either the 180° or the origin is missing
	Enlargement SF −1 centre the origin		B1 if either the SF or the centre is missing

Additional Guidance				
Ignore any reference to direction B1	Accept 'Rotation of half a turn' for			
Answers of Rotation or Enlargement with no other description attached score B0				
Rotation 90° is B0 (incorrect angle, no centre of rotation)				

(c)	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	B1	

Additional Guidance

If no working or answer seen in (c), look at (b) ... the matrix for M² might be written there, and, if correct, will score B1 in (c)