<u>6 GEOMETRY – Further Maths</u>

Section 6.1 (Area & Volume)

- **Q1.** A sphere has radius *x* centimetres. A hemisphere has radius *y* centimetres. The shapes have equal volumes. Work out the value of $\frac{y}{x}$. Give your answer in the form $a^{\frac{1}{3}}$ where *a* is an integer. (3 marks)
- **Q2.** A cone has base radius *r* cm, perpendicular height *h* cm and slant height *l* cm The curved surface area is 60π cm² l = 3r

Work out the value of *h*. Give your answer in the form $a \sqrt{10}$ where *a* is an integer greater than 1 (5 marks)

Q3. This right circular cone has radius 2*p* and height 5*p*. The dimensions are in centimetres.

The volume of the cone is 22500π cm³.

Work out the value of p.

(4 marks)

Q4. *PQRS* is a trapezium.

The area of the trapezium is 63 square units. Work out the value of *a*. (2 r

(2 marks)

Q5. On this diagram all lengths are given in centimetres.

A cylinder and cone are joined together to make a solid. The cylinder has radius r and height (r + 5)

The cone has radius *r* and slant height $\frac{9r}{2}$

- (a) Show that the **total** surface area of the solid, in cm², is $\frac{5\pi r}{2}(3r+4)$ (4 marks)
- (b) The total surface area of the solid is 1200π cm² Work out the value of *r*. (5 marks)
- **Q6.** A cone has base radius r cm and slant height l cm

A hemisphere has radius r cm

- (a) The curved surface area of the cone equals the curved surface area of the hemisphere. Show that l = 2r (1 mark)
- (b) The cone has vertical height h cm

$$\frac{1}{3}\pi r^{-3}(a+\sqrt{b})$$
 cm³

Show that the volume of the shape can be written as where a and b are integers.

2

Section 6.1 - 6.2

Q1. A, B, C and D are points on a circle. AC and BD intersect at E.

Q2. Points A, B and C lie on a circle, centre O. Angle $AOC = x + 75^{\circ}$

Angle ABC = 2x

(3 marks)

Work out the value of *x*.

Q3. *R*, *S* and *T* are on the circumference of a circle, centre *O*.

- (a) Give a reason why angle OTS = x
- (b) Work out the value of *x*.

(1 mark) (3 marks)

(3 marks)

Angle $PSR = 4(x + 15^{\circ})$ Angle PQR is 40° smaller than angle PSR. Work out the value of x.

(3 marks)

Q5. *B*, *C* and *D* are points on a circle, centre *P*. *AB* and *AC* are tangents to the circle.

Work out the size of angle *y*.

Q7.

Q8. *F*, *H*, *K* and *J* are points on a circle.

Chords HJ and KF intersect at L. EFG is a tangent to the circle. FH and JK are parallel. Not drawn accurately

> [7) L

98

Angle FHJ = 2x

(a) Give reasons why angle *FKJ* and angle *HJK* are also equal to 2x. (2 marks)

G

(b) Work out the values of x and y. You **must** show your working. (4 marks)

Q9. *A*, *B*, *C* and *D* are points on a circle. *EBF* is a tangent. *DCF* is a straight line.

Angle DCA = angle ACB = 2x

Е

BC = BF

Work out the value of x.

Prove that $w = x + 90^{\circ}$

(5 marks)

Section 6.3 - 6.5

Q1. Here is a right-angled triangle.

Q2. Use the sine rule to work out the size of obtuse angle *x*.

y 2y x 18°

Not drawn accurately

Q3. *VABCD* is a pyramid with a horizontal rectangular base *ABCD*.

V is directly above the centre of the base.

VA = VB = VC = VD = 10 cmAB = 8 cm BC = 6 cmM is the midpoint of BC.

Work out the size of angle VMD.

$$AD = 2\sqrt{3}$$
 cm

Work out the exact length of CD.

Give your answer in the form $a + b\sqrt{3}$ where *a* and *b* are integers. (4 marks)

Work out the equation of the line BC.

Q6. *ABC* is a triangle. All lengths are in centimetres.

Show that angle $CAB = 60^{\circ}$

Q7. ABCDEFGH is a cube with side length 32 cm

M and N are points on DH and CG respectively.

Work out the size of the angle that the line BM makes with the plane ABCD.

(5 marks)

(4 marks)

(5 marks)

9

Q9. ABCDEFGH is a cuboid.

AB = 40 cmBC = 9 cmCG = 20 cmP is a point on HG such thatHP : PG = 3 : 7AP = 25 cm

Work out the size of angle APC.

Q10.

Here is a triangle.

Use the cosine rule to work out the value of *x*.

(4 marks)

(5 marks)

Not drawn

Q12. ABC is a right-angled triangle with vertices A (-1, 5), B (-2, 5) and C $\left(-1, 5\frac{3}{4}\right)$

Work out the length of *BC*.

(3 marks)

Section 6.6 - 6.7

Q1. Here is a sketch graph of $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$

You are given that $\cos 36^\circ = 0.8090$

Solve $\cos x = -0.8090$ for $0^{\circ} \le x \le 360^{\circ}$

Q2. State the coordinates of each point where the graph

 $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$ meets or intersects an axis.

(2 marks)

(2 marks)

Q3. Four graphs are shown for $180^\circ \le x \le 360^\circ$

- (a) Which graph is $y = \sin x$?
- (b) Which graph is $y = \cos x$?

Q4. Here is a sketch of $y = \tan x$ for $0^\circ \le x \le 360^\circ$

y Not drawn accurately 0° 90° 180° 270° 360° x

12

Q5. Here is a sketch of $y = \sin x$ for $0^\circ \le x \le 360^\circ$

 α is an acute angle measured in degrees.

 $\sin \alpha = k$ where k is a constant.

Write the answers to each of the following in terms of k, without involving trigonometric functions.

(a)	$\sin(180^\circ - \alpha)$	(1 mark)
(b)	$\sin(360^\circ - \alpha)$	(1 mark)
(c)	$\cos \alpha$	(2 marks)

Section 6.9

 $\frac{4\cos^2 x + 3\sin^2 x - 4}{\cos^2 x} = -\tan^2 x$ **Q1.** Show that (3 marks) $\frac{2\sin^2 x - 1 + \cos^2 x}{\sin x \cos x}$ **Q2.** (a) is equivalent to $\tan x$ Show that (3 marks) $2\sin^2 x - 1 + \cos^2 x$ sin x cos x = -1 for $0^{\circ} \le x \le 360^{\circ}$ Hence solve (b) (2 marks) Q3. Prove that $\sin^2 x - 3\cos^2 x \equiv 4\sin^2 x - 3$ (2 marks) (a) Hence, or otherwise, work out the values of x between 0° and 360° for which (b) $\sin^2 x - 3\cos^2 x = 0$ (4 marks) $\sin \theta - \sin^3 \theta$ = tan θ $\cos^3\theta$ **Q4.** Prove that (3 marks)

(3 marks)

Q6. Prove that
$$\tan \theta + \frac{1}{\tan \theta} \equiv \frac{1}{\sin \theta \cos \theta}$$
 (3 marks)

Section 6.10

- **Q1.** Work out the value of x where $0^{\circ} \le x \le 90^{\circ}$ for which $3 \tan^2 x = 1$ (2 marks)
- **Q2.** Solve sin x = 0.5 for $0^{\circ} \le x \le 360^{\circ}$ (2 marks)

Q3. One solution of $\tan x = \sqrt{3}$ is 120°Circle another solution. 210° 240° 300° 330° (1 mark)Q4. Solve $3\cos^2 \theta - 1 = 0$ for $0^{\circ} \le \theta \le 180^{\circ}$ Q5. Solve $\tan^2 \theta + 3 \tan \theta = 0$ for $0^{\circ} < \theta < 360^{\circ}$ (5 marks)

Q6. 0 < *p* < 1

How many solutions of $\sin x = p - 1$ are between 0° and 180°? You may use a sketch graph to help you. (1 mark)