6 GEOMETRY - Further Maths

Section 6.1 (Area \& Volume)

Q1. A sphere has radius x centimetres. A hemisphere has radius y centimetres.
The shapes have equal volumes. Work out the value of $\frac{y}{x}$.
Give your answer in the form $a^{\frac{1}{3}}$ where a is an integer.

Q2. A cone has base radius $r \mathrm{~cm}$, perpendicular height $h \mathrm{~cm}$ and slant height $l \mathrm{~cm}$
The curved surface area is $60 \pi \mathrm{~cm}^{2}$
$l=3 r$

Work out the value of h.
Give your answer in the form $a \sqrt{10}$ where a is an integer greater than 1

Q3. This right circular cone has radius $2 p$ and height $5 p$. The dimensions are in centimetres.

The volume of the cone is $22500 \pi \mathrm{~cm}^{3}$. Work out the value of p.

Q4. $P Q R S$ is a trapezium.

The area of the trapezium is 63 square units. Work out the value of a.

Q5. On this diagram all lengths are given in centimetres.
A cylinder and cone are joined together to make a solid. The cylinder has radius r and height ($r+5$)
The cone has radius r and slant height $\frac{9 r}{2}$

(a) Show that the total surface area of the solid, in cm^{2}, is $\frac{5 \pi r}{2}(3 r+4)$ (4 marks)
(b) The total surface area of the solid is $1200 \pi \mathrm{~cm}^{2}$ Work out the value of r. (5 marks)

Q6. A cone has base radius $r \mathrm{~cm}$ and slant height $l \mathrm{~cm}$
A hemisphere has radius $r \mathrm{~cm}$

(a) The curved surface area of the cone equals the curved surface area of the hemisphere. Show that $l=2 r$
(b) The cone has vertical height $h \mathrm{~cm}$

Show that the volume of the shape can be written as $\frac{1}{3} \pi r^{3}(a+\sqrt{b}) \mathrm{cm}^{3}$ where a and b are integers.

Q1. A, B, C and D are points on a circle. $A C$ and $B D$ intersect at E.

Prove that $y=90^{\circ}-\frac{3}{2} x$
(3 marks)

Q2. Points A, B and C lie on a circle, centre O. Angle $A O C=x+75^{\circ}$

Work out the value of x.

Q3. R, S and T are on the circumference of a circle, centre O.

(a) Give a reason why angle $O T S=x$
(b) Work out the value of x.

Q4. $P Q R S$ is a cyclic quadrilateral.

Not drawn
accurately

Angle $P S R=4\left(x+15^{\circ}\right) \quad$ Angle $P Q R$ is 40° smaller than angle $P S R$. Work out the value of x.

Q5. B, C and D are points on a circle, centre P.
$A B$ and $A C$ are tangents to the circle.

Not drawn accurately

Prove that $\quad y=90+\frac{x}{2}$

Q6. A, B, C and D are points on a circle.

$$
\angle B C A=x \quad \angle A C D=2 x \quad \angle C A D=x \quad \angle C A B=4 x
$$

Prove that $A C$ is a diameter.

Q7.
A, B and C are points on a circle, centre O.

Work out the size of angle y.

Not drawn accurately

Not drawn accurately

Q8. F, H, K and J are points on a circle.
Chords $H J$ and $K F$ intersect at $L . \quad E F G$ is a tangent to the circle. $F H$ and $J K$ are parallel.

Angle $F H J=2 x$
(a) Give reasons why angle $F K J$ and angle $H J K$ are also equal to $2 x$.
(b) Work out the values of x and y. You must show your working.

Q9. A, B, C and D are points on a circle. $\quad E B F$ is a tangent. $D C F$ is a straight line.
Angle $D C A=$ angle $A C B=2 x$
$B C=B F$

Not drawn accurately

Work out the value of x.

Not drawn accurately

Prove that $w=x+90^{\circ}$
(5 marks)

Section 6.3-6.5

Q1. Here is a right-angled triangle.

Not drawn accurately

You are given that $\quad a>5$ Use trigonometry to work out the range of values of x. (2 marks)

Q2. Use the sine rule to work out the size of obtuse angle x.

Not drawn
accurately

Q3. $V A B C D$ is a pyramid with a horizontal rectangular base $A B C D$.
V is directly above the centre of the base.
$V A=V B=V C=V D=10 \mathrm{~cm}$
$A B=8 \mathrm{~cm} B C=6 \mathrm{~cm}$
M is the midpoint of $B C$.

Work out the size of angle VMD.

Q4. In the diagram, $B C D$ is a straight line.

$$
A D=2 \sqrt{3} \mathrm{~cm}
$$

Work out the exact length of $C D$.
Give your answer in the form $a+b \sqrt{3}$ where a and b are integers.

Q5. In the diagram, $\quad A$ is the point $(15,0)$ and B lies on the y-axis.
Angle $A B C=90^{\circ}$ and $\tan \theta=\frac{5}{3}$

Work out the equation of the line $B C$.
(4 marks)

Q6. $A B C$ is a triangle. All lengths are in centimetres.

Not drawn accurately

Show that angle $C A B=60^{\circ}$

Q7. $A B C D E F G H$ is a cube with side length 32 cm

Work out the size of the angle that the line $B M$ makes with the plane $A B C D$.

Q8. $A B C$ is a right-angled triangle. All lengths are in centimetres.

Not drawn accurately
$\sin x=\frac{3}{5}$
Work out the length $B C$.

Q9. $A B C D E F G H$ is a cuboid.

$$
\begin{array}{lll}
A B=40 \mathrm{~cm} \quad B C=9 \mathrm{~cm} & C G=20 \mathrm{~cm} \\
P \text { is a point on } H G \text { such that } & H P: P G=3: 7 \\
A P=25 \mathrm{~cm}
\end{array}
$$

Work out the size of angle APC.
(5 marks)

Q10.
Here is a triangle.

Use the cosine rule to work out the value of x.

Not drawn

The area of the triangle is $120 \mathrm{~cm}^{2}$ Work out the size of angle y.

Q12. $\quad A B C$ is a right-angled triangle with vertices $A(-1,5), B(-2,5)$ and $C\left(-1,5 \frac{3}{4}\right)$ Work out the length of $B C$.

Section 6.6-6.7

Q1. Here is a sketch graph of $y=\cos x$ for $0^{\circ} \leq x \leq 360^{\circ}$

You are given that $\cos 36^{\circ}=0.8090$
Solve $\cos x=-0.8090$ for $0^{\circ} \leq x \leq 360^{\circ}$

Q2. State the coordinates of each point where the graph

$$
y=\cos x \text { for } 0^{\circ} \leq x \leq 360^{\circ}
$$

meets or intersects an axis.

Q3. Four graphs are shown for $180^{\circ} \leq x \leq 360^{\circ}$

Graph A

Graph C

Graph B

Graph D

(a) Which graph is $y=\sin x$?
(b) Which graph is $y=\cos x$?

Q4. Here is a sketch of $y=\tan x$ for $0^{\circ} \leq x \leq 360^{\circ}$

How many solutions of $\tan x=k$ where $k>0$ are between 90° and $360^{\circ} ?$

Q5. . Here is a sketch of $y=\sin x$ for $0^{\circ} \leq x \leq 360^{\circ}$

α is an acute angle measured in degrees.
$\sin \alpha=k \quad$ where k is a constant.
Write the answers to each of the following in terms of k, without involving trigonometric functions.
(a) $\sin \left(180^{\circ}-\alpha\right)$
(1 mark)
(b) $\sin \left(360^{\circ}-\alpha\right)$
(1 mark)
(c) $\cos \alpha$

Section 6.9

Q1. Show that $\frac{4 \cos ^{2} x+3 \sin ^{2} x-4}{\cos ^{2} x} \equiv-\tan ^{2} x$

Q2. (a) Show that $\frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x}$ is equivalent to $\tan x$
(b) Hence solve $\frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x}=-1$ for $0^{\circ} \leq x \leq 360^{\circ}$

Q3.
(a) Prove that $\sin ^{2} x-3 \cos ^{2} x \equiv 4 \sin ^{2} x-3$
(b) Hence, or otherwise, work out the values of x between 0° and 360° for which

$$
\sin ^{2} x-3 \cos ^{2} x=0
$$

Q4. Prove that $\frac{\sin \theta-\sin ^{3} \theta}{\cos ^{3} \theta} \equiv \tan \theta$

Q5. Express $1-\tan \theta \sin \theta \cos \theta$ in terms of $\cos \theta$.

Q6. Prove that $\tan \theta+\frac{1}{\tan \theta} \equiv \frac{1}{\sin \theta \cos \theta}$

Section 6.10

Q1. Work out the value of x where $0^{\circ} \leqslant x \leqslant 90^{\circ}$ for which $3 \tan ^{2} x=1$
(2 marks)

Q2. Solve $\sin x=0.5$ for $0^{\circ} \leq x \leq 360^{\circ}$

Q3. One solution of $\tan x=-\sqrt{3}$ is 120°
Circle another solution.

$$
\begin{array}{llll}
210^{\circ} & 240^{\circ} & 300^{\circ} & 330^{\circ}
\end{array}
$$

Q4. Solve $3 \cos ^{2} \theta-1=0$ for $0^{\circ} \leq \theta \leq 180^{\circ}$

Q5. Solve $\tan ^{2} \theta+3 \tan \theta=0$ for $0^{\circ}<\theta<360^{\circ}$

Q6. $0<p<1$
How many solutions of $\sin x=p-1$ are between 0° and 180° ? You may use a sketch graph to help you.

