6 GEOMETRY - Further Maths

Jump to:
Section 6.1 (Area \& Volume)
Section 6.1-6.2
Section 6.3-6.5
Section 6.6-6.7
Section 6.9
Section 6.10

Section 6.1 (Area \& Volume)

Mark schemes

Q1.

Answer	Mark	Comments
$\frac{4}{3} \pi x^{3}(=) \frac{2}{3} \pi y^{3}$	M1	oe eg 1 $\frac{4}{3} \pi \times x^{3}(=)$ eg $2 y^{3}=2 x^{3}$
$\left(\frac{y^{3}}{x^{3}} \Rightarrow\right) \frac{4}{3} \pi \times y^{3}$		
$\frac{\frac{4}{3}}{3} \pi$		
or $y=\sqrt[3]{2} x$	M1Dep	oe $\frac{y^{3}}{x^{3}}=2$
$2^{\frac{1}{3}}$	A1	$\sqrt[3]{2}$ scores M2 A0

Q2.

Answer	Mark	Comments		
Alternative method $\mathbf{1}$				
$\pi \times r \times 3 r=60 \pi$	M1	oe		
$r^{2}=20$ $r=2 \sqrt{5}$ or $r=\sqrt{20}$ or	A 1	oe		
$(l=) 3 \sqrt{20}$ or $(l=) 6 \sqrt{5}$	A 1	oe		
or $(l=) \sqrt{180}$ or $l^{2}=180$			\quad	
:---				

$\left(h^{2}=\right)(3 \sqrt{20})^{2}-(\sqrt{20})^{2}$	M 1	oe using their l and r (this is independent so I and r can be anything) or
$\left(h^{2}=\right)(6 \sqrt{5})^{2}-(2 \sqrt{5})^{2}$		condone missing brackets
or		
$\left(h^{2}=\right)(\sqrt{180})^{2}-(\sqrt{20})^{2}$		
or $\left(h^{2}=\right) 160$	A1	
$(h=) 4 \sqrt{10}$		

Alternative method 2		M1
$\pi \times \frac{l}{3} \times l=60 \pi$	oe	
$l^{2}=180$ or $l=\sqrt{180}$ or $l=3 \sqrt{20}$ or $l=6 \sqrt{5}$	oe	
$r^{2}=20$ or $(r=) \sqrt{20}$ or $(r=) 2 \sqrt{5}$	A1	oe
$\left(h^{2}=\right)(3 \sqrt{20})^{2}-(\sqrt{20})^{2}$ or $\left(h^{2}=\right)(6 \sqrt{5})^{2}-(2 \sqrt{5})^{2}$ or $\left(h^{2}=\right)(\sqrt{180})^{2}-(\sqrt{20})^{2}$ or $\left(h^{2}=\right) 160$	oe using their l and r (this is independent so l and r can be anything) condone missing brackets	
$(h=) 4 \sqrt{10}$	A1	

Alternative method 3

$\pi \times r \times 3 r=60 \pi$ or $\pi \times \frac{l}{3} \times l=60 \pi$	M 1	oe
$r^{2}=20$ or $r=\sqrt{20}$ or $r=2 \sqrt{5}$	A 1	oe
or		
$l=3 \sqrt{20}$ or $l=6 \sqrt{5}$ or $l=\sqrt{180}$		
or $l^{2}=180$	M1	oe to form an equation with only 2 variables using their l or r (this is independent so l and r can be anything)
$r^{2}+h^{2}=(3 r)^{2}$ or $\left(h^{2}=\right) 9 r^{2}-r^{2}$		
or $\left(\frac{l}{3}\right)^{2}+h^{2}=l^{2}$ or $\left(h^{2}=\right) l^{2}-\frac{l^{2}}{9}$		

$(h=) \mathrm{r} \sqrt{8}$ or $\left(h^{2} \Rightarrow 160\right.$	A 1	oe
$(h=) 4 \sqrt{10}$	A 1	

Additional Guidance	
Second M mark is independent of first M mark	
Answer with no working will not gain any marks	
Minimum working for full marks would be a correct expression in the second M mark for alt method 1 and alt method 2. In this the candidate would show l and r so the first M mark would be implied. On alt method 3 they would need to show correct evidence in the first A mark and second M mark as a minimum expectation	

Q3.

Answer	Mark	Comments
$\frac{1}{3}(x) \pi(x)(2 p)^{2}(x) 5 p \quad(=$ $\left.\frac{20 \pi}{3} p^{3}\right)$	B1	oe Missing brackets B0 unless recovered May be implied by working for M1
their $\frac{1}{3}(x) \pi(x)(2 p)^{2}(x) 5 p$		
$=22500 \pi$	M1	oe eg $\frac{20 \pi}{3} p^{3}=22500 \pi$ π may already be cancelled or value for π may be substituted in Must be equating two volumes
Correctly rearranges to $p^{3}=$	M1dep	oe eg $p=\sqrt[3]{3375}$
eg $p^{3}=22500 \pi \div$ their $\frac{20 \pi}{3}$		A1
15	SC3 [18.8, 18.9]	

Q4.

Answer	Mark	Comments
$\frac{1}{2} \times(8+4) \times a(=63)$	M1	any letter oe eg $12 a=126$

or $\frac{1}{2} \times 12 \times a(=63)$ or $6 a(=63)$ or $63 \div 6$		or $\frac{1}{2} \times 3 \times a+4 \times a+\frac{1}{2} \times 1 \times$ $a(=63)$
10.5 or $10 \frac{1}{2}$ or $\frac{21}{2}$	A1	

Additional Guidance

M1 is for a full area calculation (=63)

Q5.
(a)

Answer	Mark	Comments
$\frac{2 \pi r(r+5) \text { seen }}{\frac{9 \pi r^{2}}{2}}$ M1	oe eg $2 \times \pi \times r(r+5)$	
$\pi r^{2}+2 \pi r^{2}+10 \pi r+\frac{9 \pi r^{2}}{2}$ or	A1	lorrect unsimplified expression with brackets $2 \pi r(r+5)$ expanded May still contain multiplication signs
$\frac{2 \pi r^{2}+4 \pi r^{2}+20 \pi r+9 \pi r^{2}}{2}$ or	oe eg $\pi \times \frac{9 r}{2}$	
$3 \pi r^{2}+10 \pi r+\frac{9 \pi r^{2}}{2}$	or	
$\frac{6 \pi r^{2}+20 \pi r+9 \pi r^{2}}{2}$	A1	Must see M2 A1
$\frac{15 \pi r^{2}}{2}+10 \pi r=\frac{5 \pi r}{2}(3 r+4)$		
or		
$\frac{15 \pi r^{2}+20 \pi r}{2}=\frac{5 \pi r}{2}(3 r+4)$		

(b)

$\frac{5 \pi r}{2} \quad(3 r+4)=1200 \pi$	M1	oe
Allow $1200 \pi \rightarrow 1200$		
Correct equation or 3 term expression with no unexpanded brackets eg 1 $3 r^{2}+4 r-480(=0)$	A1	oe

$\begin{array}{ll} \text { eg } 2 & 15 r^{2}+20 r=2400 \\ \text { eg } 3 & \frac{15 \pi}{2} r^{2}+10 \pi r=1200 \pi \end{array}$		
Attempt to factorise their 3 term quadratic $\begin{aligned} & \text { eg for } 3 r^{2}+4 r-480 \\ & (3 r+a)(r+b) \end{aligned}$ where $a b= \pm 480$ or $3 b+a=$ ± 4 or Attempt to substitute in the formula for their 3 term quadratic (allow one sign error) eg for $3 r^{2}+4 r-480$ $\frac{-4 \pm \sqrt{4^{2}-4 \times 3 \times-480}}{2 \times 3}$ or $\begin{equation*} \frac{4 \pm \sqrt{4^{2}-4 \times 3 \times-480}}{2 \times 3} \tag{1} \end{equation*}$ sign error)	M1dep	oe Attempt to complete the square for their 3 term quadratic eg for $3 r^{2}+4 r-480$ (3) $\left[\left(r+\frac{2}{3}\right)^{2} \ldots \ldots ..\right]$
Correctly factorises their 3 term quadratic $\begin{aligned} & \text { eg for } 3 r^{2}+4 r-480(=0) \\ & (3 r+40)(r-12)(=0) \end{aligned}$ or Correct substitution in formula for their 3 term quadratic eg for $3 r^{2}+4 r-480(=0)$ $\frac{-4 \pm \sqrt{4^{2}-4 \times 3 \times-480}}{2 \times 3}$	A1ft	ft M1 A0 M1dep oe Correct completion of square for their 3 term quadratic eg for $3 r^{2}+4 r-480$ (3) $\left.\left[\left(r+\frac{2}{3}\right)^{2}-\frac{2}{(3)}\right)^{2}-160\right]$ oe
12	A1	Do not award if negative solution also included

Q6.
Answer
(a)
$2 \pi r^{2}=\pi r l$ leading to $2 r=l$
or
$\frac{4 \pi r^{2}}{2}=\pi r l$ leading to $2 r=l$

B1	oe
Allow verification	

Additional Guidance	
$2 \pi r^{2}=\pi r l$ with appropriate cancelling shown	B 1
Any incorrect working	B 0
Verification example	B 1
(Cone $=$) $\pi r l=\pi r \times 2 r=2 \pi r^{2}$	
Hemisphere is $2 \pi r^{2}$ (Must link $2 \pi r^{2}$ with the hemisphere)	

(b)

$(2 r)^{2}=r^{2}+h^{2}$	M 1	oe			
$h=r \sqrt{3}$ or $h=\sqrt{3 r^{2}}$	A1				
$\frac{2}{3} \pi r^{3}(+)^{\frac{1}{3}} \pi r^{2} \times$ their $r \sqrt{3}$	M1	Must replace h with an expression in terms of r $\frac{2}{3}$			
$\frac{4}{3} \pi r^{3}(2+\sqrt{3})$	Allo be $\frac{4}{3} \pi r^{3}$ or $\frac{8}{3} \pi r^{3}$		$	$	with correct method seen
:---					

Additional Guidance	
$2 r^{2}=r^{2}+h^{2}$ is M0 unless recovered	
$2 r^{2}=r^{2}+h^{2}$	M0
$h=r$	A0
$\frac{8}{3} \pi r^{3}+\frac{1}{3} \pi r^{3}$	M1
$3 \pi r^{3}$	A0
lgnore units	

Section 6.1-6.2

Q1.

Answer	Mark	Comments
Alternative method 1		M1
angle $B A C=2 y$		
$2 y+x+2 x=180$ with M1 seen	M1dep	
$y=90-\frac{3}{2} x$	A1	
and		
angles in same segment (are equal) and angle sum of triangle (is $\left.180^{\circ}\right)$ with M2 seen		

Alternative method 2		
angle $A C D=x$ or angle $C E D=2 x$	M1	
angle $A C D=x$		
and		
angle CED $=2 x$	M1dep	
and		
$2 y+x+2 x=180$ with M1		
seen		
$y=90-\frac{3}{2} x$	A1	
and		
angles in same segment (are		
equal)		
and		
vertically opposite angles (are		
equal)		

and angle sum of triangle (is 180°) with M2 seen		

Alternative method 3		
angle $B A E=180-3 x$	M1	
$2 y=180-3 x$ with M1 seen	M1dep	
$y=90-\frac{3}{2} x$		
and	A1	
angle sum of triangle (is 180°)		
and		
angles in same segment (are equal) with M2 seen		

Additional Guidance	
Statement must be made - do not accept if angles are only shown on the diagram	
Allow unambiguous indication of angles eg allow A for $B A C$ but do not allow E for $C E D$	

Q2.

Answer	Mark	Comments
Alternative method 1		M1
reflex angle $A O C=2 \times 2 x$ or $4 x$	M1dep	oe If they start with this equation, the first M1, for reflex angle $A O C$ $=4 x$, is implied
their $4 x+x+75=360$	A1	
$(x=) 57$		

Alternative method 2

reflex angle $A O C=360-(x+$ $75)$ or $285-x$	M1	oe
$360-(x+75)=2(2 x)$		
or their $285-x=2(2 x)$	M1dep	oe
$(x=) 57$	A1	

Alternative method 3

angle at circumference $=180$ $-2 x$	M1	creating a cyclic quadrilateral
$x+75=2(180-2 x)$ or $x+75=360-2(2 x)$	M1dep	oe
$(x=) 57$	A1	

Alternative method 4

angle at circumference $=$ $x+75$ 2	M1	oe creating a cyclic quadrilateral
$\frac{x+75}{2}+2 x=180$	M1dep	$\left\lvert\, \begin{aligned} & \text { oe } \\ & \frac{x}{2}+\frac{\text { their } 75}{2} \\ & \text { this mark } \end{aligned}+2 x=180\right. \text { scores }$
$(x=) 57$	A1	

Additional Guidance

$4 x=x+75($ ans $x=25)$ and $x+75+2 x=180$ (ans $x=35$) both score 0 marks

Q3.
(a)

Answer	Mark	Comments
Valid reason	B 1	
eg 1 Triangle OTS is		
isosceles		
eg 2 $O T=O S$		
eg 3 $O T$ and $O S$ are radii		

(b)

Correct equation eg $15 x=2(x+30)$ eg $2 \quad 2.5 x=x+30$ eg $3(180-2 x)+120+5 x$ $=360$ eg $4 x+30+x+30+360-$ $5 x=360$	M1	oe Brackets not needed in eg 3
Collects terms for their initial equation eg $15 x-2 x=60$ eg $22.5 x-x=30$ eg 3 -120	M1	oe their initial equation must have \geq 2 terms in x Any brackets must be expanded correctly
20	A1	

Q4.

Answer	Mark	Comments
$4(x+15)+4(x+15)-40=$ 180 or $8(x+15)-40=180$ or $4(x+15)=\frac{180+40}{2}$ or $4(x+15)-40=\frac{180-40}{2}$ or $y+4(x+15)=180$ and $y=4(x+15)-40$	M1	oe equation in x or pair of equations in x and y y may be any letter other than x eg $180-(4 x+60)+40=4 x+$ 60 or $4(x+15)=110$ or $4(x+15)-40=70$ or $y+4 x=120$ and $y=4 x+20$ implied by $y=70$
$\begin{aligned} & 4 x+60+4 x+60-40=180 \\ & \text { or } 8 x+120-40=180 \\ & \text { or } 8 x=100 \\ & \text { or } 100 \div 8 \\ & \text { or } 4 x=50 \\ & \text { or } 50 \div 4 \end{aligned}$	M1dep	oe equation or calculation equation with brackets expanded and fractions eliminated eg $120-4 x+40=4 x+60$ or $8 x+80=180$ or $4 x+60=110$

		or $4 x+20=70$
12.5 or $\frac{25}{2}$ or $12 \frac{1}{2}$	A1	oe eg $\frac{100}{8}$ or $\frac{50}{4}$ SC2 2.5 oe

Additional Guidance	
Ignore simplification or conversion if correct answer seen	
2nd M1 Allow unnecessary brackets	M1M1
eg $(4 x+60)+(4 x+60)-40=180$	M1M0
1st M1 may be implied if expansion error seen	
eg $4(x+15)=4 x+15$ (may be seen on diagram)	
$4 x+15+4 x+15-40=180$	
Only $4 x+15+4 x+15-40=180$	M0
SC2 is when they have angle $P Q R 40^{\circ}$ larger than angle $P S R$	

Q5.

Answer	Mark	Comments
States that $\angle A B P$ or $\angle A C P$ is 90	B1	can be seen on diagram (either 90 or a square angle)
Any one further angle correct (not $\angle A B P$ or $\angle A C P$)	B1	minor $\angle B P C=180-x$ or $360-$ $2 y$ or major $\angle B P C=2 y$ or $180+x$ or $\angle B Q C=180-y$ or $90-\frac{x}{2}$ (where Q is a point on the major arc)
Another further angle correct (not $\angle A B P$ or $\angle A C P$)	B1	any two of minor $\angle B P C=180-x$ or $360-$ $2 y$ or major $\angle B P C=2 y$ or $180+x$ or $\angle B Q C=180-y$ or $90-\frac{x}{2}$ (where Q is a point on the major arc)

\(\left.\left.$$
\begin{array}{|l|l|l|}\hline & & \begin{array}{l}\text { could be the same angle found in } \\
\text { the previous B mark but an } \\
\text { expression in } y \text { rather than } x\end{array} \\
\hline \begin{array}{l}\text { A correct equation in terms of } \\
x \text { and } y\end{array} & \text { B1dep } & \begin{array}{l}\text { dependent on first three B marks } \\
\text { awarded } \\
\text { doesn't imply the first } 3 \text { B marks }\end{array} \\
\hline \begin{array}{l}3 \text { reasons given for the } \\
\text { theorems used correctly for } \\
\text { the angles stated in the first } \\
\text { three marks }\end{array} & \text { B1dep } & \begin{array}{l}\text { dependent on first three B marks } \\
\text { awarded reason - angle formed } \\
\text { from a tangent and a radius is a } \\
\text { right angle (can only be used } \\
\text { once) }\end{array} \\
\text { reason - angles in a quadrilateral } \\
\text { add up to 360 }\end{array}
$$\right\} \begin{array}{l}reason - angle at the centre is

twice the angle at the

circumference\end{array}\right\}\)| reason - opposite angles in a |
| :--- |
| cyclic quadrilateral add up to 180 |
| reason - angles at a point (or in a |
| circle) add up to 360 |
| reason - alternate segment |
| theorem |

Additional Guidance	
Angles must be identified with either our terminology such as $\angle A B P$ or their own labelling such as m or θ or can be seen on	
the diagram	
Accept supplementary for angles adding to 180	
Accept complementary for angles adding to 90	
Use of obtuse and reflex or interior and exterior instead of minor and major is fine. If it's not clear then assume it's the minor arc they are referring to Check candidates are not assuming that $B D C P$ is a kite and using symmetry of this shape	
Check candidates are not using $B D C P$ as a cyclic quadrilateral	
No credit for numbers used instead of x and y	
Mark the first three B marks positively	
Note $-A B P C$ is a cyclic quadrilateral but D is not the centre of that circle	
Note $-D$ is not the middle of minor arc $B C$	

Q6.

Answer	Mark	Comments		
$x+2 x+3 x+4 x=180$ or $10 x=180$	M1	oe		
$x=18$ or $5 x=90$	M1dep	must see working for first M1		
$\angle A B C=90$ or $\angle A D C=90$	A1	must see working for M1M1		
and				
(converse of) angle in a				
semicircle				
and				
$A C$ is a diameter			\quad A1	must see working for M1M1
:---				
(sum of) opposite angles of a cyclic quad $=180$ and angle sum of a triangle $=$ 180				

Additional Guidance

The final A1 is likely to be seen within the working for M1M1A1

Q7.

Answer	Mark	Comments				
$x+62=2(2 x-50)$	M1	oe				
$62+100=4 x-x$ or $3 x=162$	M1dep	oe				
correct expansion and collection						
of terms			,	$x=54$	A1	
:---	:---	:---				
$\frac{180-62-\text { their } 54}{2}$	A1ft	ft their x with first and third M1 gained				
32						

Q8.
(a)

Answer	Mark	Comments
Angles in the same segment	B1	oe eg angles at the circumference are equal
Alternate angles	B1	do not accept alternative or alternating

Additional Guidance	
Angles on the circumference from a chord	B1
Angles in the same sector, opposite angles, parallel lines, angles from a chord, similar triangles, isosceles triangle, corresponding angles, triangles on a chord, intersecting chords, allied angles, alternate segment theorem	B0

(b)

$\angle H J F=3 y$	M1	may be on the diagram implied by one correct equation in x and y
or		
$\angle J F G=2 x$		
or		
$\angle H F L=2 x$		
$2 x+3 y+98=180$	M1dep	two correct equations in x and y
and		
$4 x+7 y=180$		
A correct attempt to eliminate one of the variables from the two equations	M1dep	eg (4x+7y)-2(2x+3y)
$x=17$ and $y=16$	A1	

Q9.

Answer	Mark	Comments
Any 3 of		oe
angle $A B C=100$		eg angle $B C F=180-2 x-2 x$
or	or	
angle $A B E=2 x$	angle $C B F=180-100-2 x$	
or		
angle $B C F=180-4 x$		or

or angle $C B F=80-2 x$ or angle $C B F=8 x-180$ or angle $B C F=50+x$	B3	or
$180-4 x=50+x$ or $2 x+2 x+50+x=180$ or $8 x-180+100+2 x=180$	M1	angle $B C F=\frac{180-(80-2 x)}{2}$ B2 any two angles correct ang one angle correct diagram may be seen on the
26	oe eg $180-4 x=\frac{180-(80-2 x)}{2}$	

Additional Guidance	
M1 implies B3	

Q10.

Answer	Mark	Comments
Alternative method 1		
angle $A B O=x$	M1	may be seen on diagram implied by angle $A O B=180-2 x$
angle $A C B=180-w$	M1	oe eg angle $A C B+w=180$ may be seen on diagram
angle $A O B=2 \times(180-w)$ or angle $A O B=360-2 w$	M1dep	may be seen on diagram dep on 2nd M1 angle $A O B$ may be seen as 180 $-2 x$
$x+x+2 \times(180-w)=180$	M1dep	oe eg $2(180-w)=180-2 x$ dep on M3
$w=x+90 \text { with M4 }$ and	A1	eg of reasons isosceles triangle

| all reasons given | and angles on a straight line
 and angle at centre
 and angle sum of triangle |
| :--- | :--- | :--- |

Alternative method 2		
angle $A B O=x$	M1	may be seen on diagram implied by angle $A O B=180-2 x$
angle $A O B=180-x-x$ or angle $A O B=180-2 x$	M1dep	$\text { oe eg } 2 x+\text { angle } A O B=180$ may be seen on diagram
angle $A C B=\frac{1}{2} \times(180-x-$ x) or angle $A C B=90-x$	M1dep	oe eg angle $A C B=\frac{1}{2} \times(180-$ 2x) may be seen on diagram angle $A C B$ may be seen as 180 $-w$
$\frac{1}{2} \times(180-x-x)+w=180$	M1dep	oe eg $w=180-(90-x)$
$w=x+90$ with M4 and all reasons given	A1	eg of reasons isosceles triangle and angle sum of triangle and angle at centre and angles on a straight line

Alternative method 3 Draws tangent (eg $P Q$) at a

angle $Q A B=90-x$	M 1	oe eg $x+$ angle $Q A B=90$ may be seen on diagram
angle $A C B=180-w$	M 1	oe eg angle $A C B+w=180$ may be seen on diagram
angle $Q A B=$ angle $A C B$	M 1	may be seen on diagram eg both angles labelled y
$90-x=180-w$	M 1 dep	oe eg $90-x+w=180$ dep on M3
$w=x+90$ with M4	A1	eg of reasons

| and
 all reasons given | radius perpendicular to tangent
 and angles on a straight line
 and alternate segment |
| :--- | :--- | :--- |

Additional Guidance	
Allow angle BCD for w throughout	
```3rd M1 and 4th M1 may be seen in one line of working eg1 Alt 1 angle \(A B O=x\) angle \(A C B=180-w\) \(180-2 x=2 \times(180-w)\) eg2 Alt 2 angle \(A B O=x\) angle \(A O B=180-2 x\) \(180-w=\frac{1}{2} \times(180-2 x)\)```	M1   M1   M1M1   M1   M1   M1M1
Condone slips in notation only if angles are marked in correct position on the diagram   eg1 Do not allow angle $c=180-w$ unless marked in correct position on the diagram   eg2 Allow $A C B$ for angle $A C B$	
For reasons, allow if the intention is clear eg1 Allow isos triangle for isosceles triangle eg2 Allow angles in a triangle for angle sum of a triangle eg3 Allow angles on a line for angles on a straight line	
For reasons do not allow incorrect statements eg do not allow angles in a triangle add to 360	

## Section 6.3-6.5

## Mark schemes

## Q1.

Answer	Mark	Comments
$(0<) x<60$   or $(0 \leqslant) x<60$	B2	$\mathrm{B} 1 \cos x>\frac{5-3}{4}$ or $\cos x>\frac{2}{4}$ or $\cos x>\frac{1}{2}$ or $x<\cos ^{-1} \frac{1}{2}$   or $a<x<60$ where $a$ is a nonzero value less than 60   or $b \leqslant x<60$ where $b$ is a value less than 60 $\operatorname{SC} 1(0<) x \leqslant 60 \text { or }(0 \leqslant) x \leqslant 60$


Additional Guidance	
Answer $(0<) x<60$ (can ignore working lines)	B2
$60>x>0$ is equivalent to $0<x<60$ etc	
$0<x<60$ is equivalent to the two inequalities $x>0 x<60$ etc	B2
Allow decimals for B1 responses eg cos $x>0.5$	B1
For B1 condone $\cos x=>\frac{1}{2}$ for $\cos x>\frac{1}{2}$	
$\cos x>\frac{1}{2}$ followed by $x>\cos ^{-1} \frac{1}{2}$	B1
Only $x>\cos ^{-1} \frac{1}{2}$	B0
$(0,60)$	B2
$[0,60)$	B2
$(0,60]$	SC1
$[0,60]$	SC1

Q2.

Answer	Mark	Comments
$\frac{\sin x}{2 y}=\frac{\sin 18}{y}$	M1	oe
$\sin x=2 \sin 18$		
or $\sin x=[0.61,0.62]$	M1dep	oe
eliminates $y$		


or $\sin ^{-1}[0.61,0.62]$		
or $38 .(17 \ldots)$ or $38 .(2)$		
$141.8 \ldots$ or 142	A1	

Q3.

Answer	Mark	Comments			
$\left(V M^{2}=\right) 10^{2}-3^{2}$ or $100-9$ or   91	M1	oe			
$\left(D M^{2}=\right) 8^{2}+3^{2}$ or $64+9$ or   73	M1	oe			
$10^{2}=$ their $91+$ their 73   $-2 \times \sqrt{\text { their } 91}$   $\times \sqrt{\text { their } 73} \times \cos V M D$	M1dep	oe			
dep on M2					
may be implied			$	$	(cos VMD $=)$
:---					
$\frac{\text { their } 91+\text { their } 73-10^{2}}{2 \times \sqrt{\text { their } 91} \times \sqrt{\text { their } 73}}$					

Q4.

Answer	Mark	Comments
$A B=\sqrt{3}$	B1	
Any one of these responses$\cdots$$\frac{B D}{2 \sqrt{3}}=\cos 30^{\circ} \quad \frac{B D}{2 \sqrt{3}}=\sin$   $60^{\circ}$   $\frac{\sqrt{3}}{B D}=\tan 30^{\circ} \quad \frac{B D}{\sqrt{3}}=\tan$   $60^{\circ}$   $B D^{2}+(\sqrt{ } 3)^{2}=(2 \sqrt{ } 3)^{2}$ oe	M1	or these ... $\begin{aligned} & \frac{B D}{2 \sqrt{3}}=\frac{\sqrt{3}}{2} \quad \frac{B D}{\sqrt{3}}=\sqrt{3} \\ & \frac{\sqrt{3}}{B D}=\frac{1}{\sqrt{3}} \\ & \frac{B D}{\sin 60^{\circ}}=\frac{\sqrt{3}}{\sin 30^{\circ}} \quad \frac{B D}{\sqrt{3} / 2}= \\ & \frac{\sqrt{3}}{1 / 2} \end{aligned}$
$B D=3$	A1	
$C D=3-\sqrt{3}$	A1	oe

Additional Guidance
SC1 for a final answer of $\frac{2 \sqrt{3} \sin 15^{\circ}}{\sin 135^{\circ}}$, possibly with $\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$ for $\sin$ $135^{\circ}$

Q5.

Answer	Mark	Comments
$\frac{5}{3} \times 15$   or 25 seen as the length of $O B$ or the coordinates of $B$	M1	
$\begin{aligned} & \text { gradient } A B=\frac{0-\text { their } 25}{15-0} \text { or } \\ & -\frac{5}{3} \end{aligned}$	M1	oe
$\begin{aligned} & \text { gradient } B C=-1 \div \text { (their }-\frac{5}{3} \\ & \text { ) or } \frac{3}{5} \end{aligned}$	M1	oe
$y=\frac{3}{5} x+25$	A1	$\begin{aligned} & \text { oe eg } y=\frac{15}{25} x+25 \text { or } 5 y=3 x+ \\ & 125 \end{aligned}$

## Additional Guidance

We must see $y=$ $\qquad$ for A1 (or any other correct equation)

Look for this in their working if it isn't written on the answer line.
A sign error in their gradient $A B$, after a correct expression, can be recovered.
eg gradient $A B=\frac{0-25}{15-0}=\frac{25}{15}=\frac{5}{3}$
gradient $B C=\frac{3}{5}$ (positive gradient because they can see it from the diagram)
equation $B C$ is $\quad y=\frac{3}{5} x+25 \ldots$ this scores 4 marks
similarly, recovery can be from ...
gradient $A B=\frac{25}{15}=\frac{5}{3} \quad \ldots$ without seeing $\frac{0-25}{15-0}$

Q6.

Answer	Mark	Comments
$\begin{aligned} & (\cos C A B=) \\ & \frac{(3+\sqrt{5})^{2}+(3-\sqrt{5})^{2}-(2 \sqrt{6})^{2}}{2(3+\sqrt{5})(3-\sqrt{5})} \end{aligned}$	M1	oe eg $(2 \sqrt{6})^{2}=(3+\sqrt{5})^{2}+(3-\sqrt{5})^{2}$ $-2(3+\sqrt{5})(3-\sqrt{5}) \cos C A B$
$\left((3+\sqrt{5})^{2}=\right) 9+3 \sqrt{5}+3 \sqrt{5}+5$   or $\left((3-\sqrt{5})^{2}=\right) 9-3 \sqrt{5}-3 \sqrt{5}+5$   or $\left((2 \sqrt{6})^{2}=\right) \quad 4 \times 6$   or $\begin{aligned} & ((3+\sqrt{5})(3-\sqrt{5})=) \\ & 9-3 \sqrt{5}+3 \sqrt{5}-5 \end{aligned}$	M1	oe eg $9+6 \sqrt{5}+5$ or $9-6 \sqrt{5}+5$   or   24   or   $9-5$ or 4
Any three of $\left((3+\sqrt{5})^{2}=\right) 9+3 \sqrt{5}+3 \sqrt{5}+5$   or $\left((3-\sqrt{5})^{2}=\right) 9-3 \sqrt{5}-3 \sqrt{5}+5$   or $\left((2 \sqrt{6})^{2}=\right) 4 \times 6$   or $\begin{aligned} & ((3+\sqrt{5})(3-\sqrt{5})=) \\ & 9-3 \sqrt{5}+3 \sqrt{5}-5 \end{aligned}$	M1dep	
$\cos C A B=\frac{14+14-24}{8}$	A1	must have $\cos C A B=$
$\cos C A B=\frac{4}{8}$ and 60		


or	A 1	
$\cos C A B=\frac{1}{2}$		


Additional Guidance	
2nd M1 is not dependent on the 1st M1	
Allow cos A or cos $x$ etc	

Q7.

Answer	Mark	Comments
Alternative method 1 Works out $M D$ and $B D$ and uses $\tan M B D$		
$\begin{aligned} & \tan 28=\frac{G N}{32} \text { or } 32 \tan 28 \\ & \text { or }[17,17.015] \end{aligned}$	M1	$\text { oe eg } \frac{32}{\tan (90-28)}$   working out $G N$ or $H M$
$32-32 \tan 28$ or [14.985, 15]	M1dep	oe   working out $N C$ or MD
$\sqrt{32^{2}+32^{2}}$ or $\sqrt{2048}$ or [45.2, 45.3]	M1	oe eg $32 \sqrt{2}$ working out $B D$
$\tan M B D=\frac{\text { their }[14.985,15]}{\text { their }[45.2,45.3]}$	M1dep	$\begin{aligned} & \text { oe eg } \tan ^{-1} \frac{\text { their }[14.985,15]}{\text { their }[45.2,45.3]} \\ & \text { dep on M3 } \end{aligned}$
[18.3, 18,4]	A1	


Alternative method 2 Works out $B D$ and $M B$ and uses $\cos M B D$		
$\begin{aligned} & \tan 28=\frac{G N}{32} \text { or } 32 \tan 28 \\ & \text { or }[17,17.015] \end{aligned}$	M1	$\text { oe eg } \frac{32}{\tan (90-28)}$   working out $G N$ or $H M$
$32-32 \tan 28$ or [14.985, 15]	M1dep	oe   working out $N C$ or MD
$\sqrt{32^{2}+32^{2}}$ or $\sqrt{2048}$   or [45.2, 45.3]   or $\sqrt{32^{2}+32^{2}+\text { their }[14.985,15]^{2}}$	M1	oe eg $32 \sqrt{2}$   working out $B D$ or $M B$   if awarding this mark for working out MB it is dependent on M2


or $[47.67,47.7]$		
$\cos M B D=$   $\frac{\sqrt{32^{2}+32^{2}}}{\sqrt{32^{2}+32^{2}+\text { their }[14.985,15]^{2}}}$	M1dep	oe
eg cos-1		
$[18.3,18,4]$	$\frac{\sqrt{32^{2}+32^{2}}}{\sqrt{32^{2}+32^{2}+\text { their }[14.985,15]^{2}}}$   dep on M3	


Alternative method 3 Works out MD and MB and uses $\sin M B D$		
$\begin{aligned} & \tan 28=\frac{G N}{32} \text { or } 32 \tan 28 \\ & \text { or }[17,17.015] \end{aligned}$	M1	oe eg $\frac{32}{\tan (90-28)}$ working out $G N$ or $H M$
$32-32$ tan 28 or [14.985, 15]	M1dep	oe working out $N C$ or $M D$
$\begin{aligned} & \sqrt{32^{2}+32^{2}+\text { their }[14.985,15]^{2}} \\ & \text { or }[47.67,47.7] \end{aligned}$	M1dep	oe working out MB
$\begin{aligned} & \sin M B D= \\ & \frac{\text { their }[14.985,15]}{\sqrt{32^{2}+32^{2}+\text { their }[14.985,15]^{2}}} \end{aligned}$	M1dep	$\begin{array}{\|l} \begin{array}{l} \text { oe } \\ \text { eg } \sin ^{-1} \\ \text { their }[14.985,15] \\ \sqrt{32^{2}+32^{2}+\text { their }[14.985,15]^{2}} \end{array} \end{array}$
[18.3, 18,4]	A1	


Additional Guidance	
1st M1 GN may be seen as a letter, eg $x$, but do not award if   subsequently used as the length of an incorrect side (eg $M N$	
4th M1 MBD may be seen as a letter, eg $y$, but do not award if   subsequently used as the size of an incorrect angle (eg $D M B)$	
Alt 1 or Alt $232 \sqrt{1^{2}+1^{2}}$	3rd M1
Alt 1 tan $M B D=\frac{32(1-\tan 28)}{32 \sqrt{2}}$ or tan $M B D=\frac{(1-\tan 28)}{\sqrt{2}}$	M4

Q8.

Answer	Mark	Comments


$\frac{3 a}{2 a+9}=\frac{3}{5}$	M 1	
$15 a=6 a+27$	M 1 dep	oe eg $9 a=27$
$a=3$	A 1	
$15^{2}-9^{2}$ or $225-81$ or 144	M 1	ft their 3 if less than 9
12	A 1 ft	ft their 3 if less than 9


Additional Guidance	
ft answer must be exact or to 1 dp or better	

Q9.

Answer	Mark	Comments
$\frac{40}{3+7} \times 7 \text { or } 28$	M1	$\text { oe eg } 40-\frac{40}{3+7} \times 3 \text { or } 40-12$   may be seen on diagram may be implied
$20^{2}+$ their $28^{2}$ or $400+784$ or 1184   or $4 \sqrt{74}$ or [34.4, 34.41]	M1	oe eg $\sqrt{20^{2}+\text { their } 28^{2}}$ or $\sqrt{1184}$ their 28 must be < 40 may be seen on diagram
$40^{2}+9^{2} \text { or } 1600+81$   or 1681   or 41	M1	oe eg $\sqrt{40^{2}+9^{2}}$ or $\sqrt{1681}$ may be seen on diagram
$\begin{aligned} & \text { their } 1681=25^{2}+\text { their } 1184 \\ & -2 \times 25 \times \sqrt{\text { their1184 }} \times \cos \\ & x \end{aligned}$	M1dep	$\begin{aligned} & \text { oe eg cos }{ }^{-1} \\ & \frac{25^{2}+\text { their1184-their1681 }}{2 \times 25 \times \sqrt{\text { their1184 }}} \\ & \text { or cos }{ }^{-1}[0.07,0.07442] \\ & \text { dep on } 2 \text { nd and 3rd M1 } \\ & x \text { may be } A P C \text { or } A \text { etc } \end{aligned}$
[85.7, 86]	A1	


Additional Guidance	
Up to M4 may be awarded for correct work with no, or incorrect   answer, even if this is seen amongst multiple attempts	



Q10.

Answer	Mark	Comments
$7^{2}=x^{2}+3^{2}-2 \times 3 \times x \cos$   $60^{\circ}$	M1	oe
$x^{2}-3 x-40(=0)$	A1	
$(x-8)(x+5)(=0)$   or   $--3 \pm \sqrt{(-3)^{2}-4 \times 1 \times-40}$   $2 \times 1$	M1	oe   follow through their three term   quadratic
8	A1	


Additional Guidance		
If -5 is also given as an answer then do not award final A mark		

Q11.

Answer	Mark	Comments
Alternative method 1 Uses $\frac{1}{2}$ absin $C$		
$\frac{1}{2} \times 16 \times 16 \times \sin x$   or $128 \sin x$	M1	$\text { oe eg } \frac{1}{2} \times 16 \times 16 \times \sin (180-$ $2 y)$   $x$ can be any letter or expression may be implied
$\begin{aligned} & \sin x=120 \div\left(\frac{1}{2} \times 16 \times 16\right) \\ & \text { or } \sin x=\frac{15}{16} \\ & \text { or } \sin -1_{-1}^{16} \\ & 0.94] \\ & \text { or } \sin ^{-1}[0.93, \\ & \text { or }[68.4,70.12313] \end{aligned}$	M1dep	oe eg $\sin x=\frac{240}{256}$ or $\sin x=[0.93,0.94]$ equation must have $\sin x=$ $x$ can be any letter or expression
$\frac{180 \text {-their[68.4,70.12313 }}{2}$	M1dep	oe
[54.93, 55.8]	A1	SC2 [75.82, 76.4]


$120 \div\left(\frac{1}{2} \times 16\right)$ or $120 \div 8$ or 15	M1	
$\begin{aligned} & \cos x=\frac{\sqrt{16^{2}-(\text { their15) }}}{16} \\ & \text { or } \cos ^{-1} \frac{\sqrt{31}}{16} \end{aligned}$   or $\tan x=\frac{15}{\sqrt{16^{2}-(\text { their15) }}}$   or $\tan ^{-1} \frac{15}{\sqrt{31}}$   or [68.4, 70.12313]	M1dep	oe eg $\sin x=\frac{15}{16}$ or $\sin x=$ [0.93, 0.94]   or $\cos x=[0.34,0.35]$   or $\tan x=[2.69,2.7]$   $x$ can be any letter or expression
$\frac{180 \text {-their }[68.4,70.12313}{2}$	M1dep	oe
[54.93, 55.8]	A1	SC2 [75.82, 76.4]


Alternative method 3 Works out perpendicular height		
$\frac{120}{15} \div\left(\frac{1}{2} \times 16\right) \text { or } 120 \div 8 \text { or }$	M1	oe
$\begin{aligned} & 16-\sqrt{16^{2}-(\text { their } 15)^{2}} \\ & \text { or } 16-\sqrt{31} \text { or }[10.4,10.44] \end{aligned}$	M1dep	$\left\lvert\, \begin{aligned} & \text { oe eg } \tan y= \\ & 15-\sqrt{16^{2}-(\text { their } 15)^{2}} \end{aligned}\right.$   $y$ can be any letter or expression
$\tan -1^{\frac{15}{\text { their[10.4,10.44] }}}$	M1dep	oe eg $\tan ^{-1}$ [1.43, 1.44231]
[54.93, 55.8]	A1	SC2 [75.82, 76.4]


Additional Guidance	
Alt $1 y=[68.4,70.12313]$	M 1 M 1
Condone $\sin =$ for $\sin x=$ etc   Condone $\sin ^{-1}=0.9375$ for $\sin ^{-1} 0.9375$ etc	
SC2 is for omitting the 0.5 from the area of triangle formula	
After scoring M1M1, the 3rd M1 is for any full method   eg Alt 168.6   Cosine rule used to work out the third side of the triangle   followed by sine rule to work out $y$ (up to sin $-1 \ldots$ )	M1M1
If there are no errors seen in the method the 3rd M 1 is awarded   and possibly the A1 as well	

## Q12.

Answer	Mark	Comments
$(A B)=1$ and $(A C)=0.75$	M1	$\begin{array}{l}\text { oe could be seen on diagram } \\ \text { allow } A B=-1 \text { and/or } A C=-0.75\end{array}$
$\left(B C^{2}=\right)^{2}+\left(\frac{3}{4}\right)^{2}$	M1dep	oe eg $(-2--1)^{2}+\left(5 \frac{3}{4}-5\right)^{2}$
$\sqrt{1.5625}$ or $\sqrt{\frac{25}{16}}$ or $\sqrt{1 \frac{9}{16}}$		
would imply this mark		


Additional Guidance	
$\frac{3}{4}, 1, \frac{5}{4}$ Pythagorean triple which	

## Section 6.6-6.7

## Mark schemes

## Q1.

Answer	Mark	Comments
$144^{\circ}$	B1	answers should be on answer   line but can be accepted if they   are the only angles written on the   diagram (other than 36 which is   the question so fine)   condone missing degree sign
$216^{\circ}$	B1	


Additional Guidance	
Don't accept $\cos 144^{\circ}, \cos 216^{\circ}, \cos x=144^{\circ}, \cos x=216^{\circ}$	B0
Accept $\cos 144^{\circ}=-0.8090$ and $\cos 216^{\circ}=-0.8090$	B1, B1
If more than 2 angles offered this is choice	
4 or more angles	B0
2 wrong 1 right	B0
1 wrong 2 right	B1
1 wrong 1 right	B1

Q2.

Answer	Mark	Comments
$(0,1)(90,0)(270,0)$   with no other points	B2	B1 two answers, both correct   or three answers, two correct   or four answers, three correct


Additional Guidance	
Condone 0,1 for $(0,1)$ etc	
$0,90,270$	B0
$(1,0)(0,90)(0,270)$	B0

Q3.
(a)

Answer	Mark	Comments
C	B1	Do not allow if more than one   answer selected

(b)

$A$	B1	Do not allow if more than one   answer selected

Q4.

Answer	Mark	Comments
1	B1	allow in words

Q5.
(a)

Answer	Mark	Comments
$k$	B 1	


Additional Guidance	
$k=0$ or $k=1$ etc	B 0

(b) $-k$

B1

Additional Guidance

$-k=0$ or $-k=1$ etc	B0

(c)

$k^{2}+\cos ^{2} \alpha=1$   or $1-k^{2}$	M1	oe eg $(1+k)(1-k)$
$\sqrt{1-k^{2}}$ or $\sqrt{(1+k)(1-k)}$	A1	


Additional Guidance	
Answer $-\sqrt{1-k^{2}}$ or $\pm \sqrt{1-k^{2}}$	M 1 AO
Correct answer followed by incorrect further work	M1A0
Answer $1-k^{2}$	$\mathrm{M} 1 \mathrm{A0}$
Allow $\cos ^{2} x$ or $\cos ^{2} \theta$ etc or $\cos ^{2}$ or $c^{2}$ or $(\cos \alpha)^{2}$ for $\cos ^{2} \alpha$	
Condone $\cos \alpha^{2}$ for $\cos ^{2} \alpha$	M0A0
$\cos \left(\sin ^{-1} k\right)$	

## Section 6.9

Mark schemes

Q1.

Answer	Mark	Comments
Alternative method 1		M1
LHS Use of: $\cos ^{2} x \equiv 1-\sin ^{2} x$	oe	
or $\sin ^{2} x \equiv 1-\cos ^{2} x$		must be used as part of a   solution (nothing for just stating   it)
or $3 \sin ^{2} x+3 \cos ^{2} x \equiv 3$		
in numerator to get:		
$4\left(1-\sin ^{2} x\right)+3 \sin ^{2} x-4$		


or $4 \cos ^{2} x+3\left(1-\cos ^{2} x\right)-4$   or $3+\cos ^{2} x-4$		
LHS   $\frac{4-4 \sin ^{2} x+3 \sin ^{2} x-4}{\cos ^{2} x}$	M1dep	one step away from the A mark   this could imply the first M1   provided they have stated the   identity used from the list in the   first M mark
or		
simplification of the other		
(oss		
forms leading to $\frac{\cos ^{2} x}{}$	A1	oe
$-\frac{\sin ^{2} x}{\cos ^{2} x} \equiv-\tan ^{2} x$		


Alternative method 2		
LHS M1    $4 \cos ^{2} x+3 \sin ^{2} x-4\left(\cos ^{2} x+\sin ^{2} x\right)$     $\cos ^{2} x$     $\left[4 \cos ^{2} x+3 \sin ^{2} x-4 \cos ^{2} x-4 \sin ^{2} x\right]$ M1    $\cos ^{2} x$     $-\frac{\sin ^{2} x}{\cos ^{2} x} \equiv-\tan ^{2} x$ A1 oe		

Alternative method 3

RHS $-\tan ^{2} x \equiv-\frac{\sin ^{2} x}{\cos ^{2} x}$	M1	
$\left[4\left(\sin ^{2} x+\cos ^{2} x\right)-4-\sin ^{2} x\right]$	M1	
$\cos ^{2} x$		
$\left[4 \cos ^{2} x+3 \sin ^{2} x-4\right]$	A1	


Additional Guidance	
Either starts with the left and finishes with the right or vice versa.	
Max M2 for any working that meets in the middle by trying to	
solve an equation	
Only mark using one of the alts - once the candidate starts to	
treat the solution as an equation by moving terms around from	

one side of the $\equiv$ to the other then stop awarding marks
The exception to this would be if a candidate uses identities to manipulate the LHS to an expression correctly and also then manipulates the RHS correctly to the same expression. They would then need to state that these two manipulations show the LHS = RHS

Q2.
(a)

Answer		Mark	Comments
Alternative method 1			
$2 \sin ^{2} x-1+1-\sin ^{2} x$   or $\begin{aligned} & 2 \sin ^{2} x-\left(\sin ^{2} x+\cos ^{2} x\right)+ \\ & \cos ^{2} x \end{aligned}$   or $2 \sin ^{2} x-\sin ^{2} x-\cos ^{2} x+\cos ^{2} x$   or $2 \sin ^{2} x-\sin ^{2} x$   or $\sin ^{2} x-\cos ^{2} x+\cos ^{2} x$   or $1+\sin ^{2} x-1$		M1	use of $\sin ^{2} x+\cos ^{2} x=1$ in numerator ignore any denominator
$\frac{\sin ^{2} x}{\sin x \cos x}$   with M1 seen	$\frac{\sin ^{2} x}{\tan x \cos ^{2} x}$   with M1 seen	M1dep	simplification to one step from $\frac{\sin x}{\cos x}$ or simplification to one step from $\frac{\tan ^{2} x}{\tan x}$
$\begin{array}{\|l} \frac{\sin x}{\cos x} \text { and } \\ \operatorname{tax} x \\ \text { with M2 seen } \end{array}$	$\frac{\tan ^{2} x}{\tan x}$ and $\operatorname{tax} x$   with M2 seen	A1	SC3 equates given expression to $\tan x$ and cross multiplies to show equivalence with full working shown

## Alternative method 2

$2\left(1-\cos ^{2} x\right)-1+\cos ^{2} x$	M1	use of $\sin ^{2} x+\cos ^{2} x=1$ in


or $2-2 \cos ^{2} x-1$	$\cos ^{2} x$		numerator   ignore any denominator
$\frac{1-\cos ^{2} x}{\sin x \cos x}$   and $\frac{\sin ^{2} x}{\sin x \cos x}$   with M1 seen	$\begin{array}{\|c} \frac{1-\cos ^{2} x}{\sin x \cos x} \\ \text { and } \\ \frac{\sin ^{2} x}{\tan x \cos ^{2} x} \\ \text { with M1 seen } \end{array}$	M1dep	simplification to one step from $\frac{\sin x}{\cos x}$ or simplification to one step from $\frac{\tan ^{2} x}{\tan x}$
$\begin{aligned} & \frac{\sin x}{\cos x} \text { and } \\ & \tan x \\ & \text { with M2 seen } \end{aligned}$	$\frac{\tan ^{2} x}{\tan x}$ and $\tan x$   with M2 seen	A1	SC3 equates given expression to $\tan x$ and cross multiplies to show equivalence with full working shown

Alternative method 3

$\frac{2 \sin x}{\cos x}-\frac{\sin ^{2} x}{\sin x \cos x}$	M1	from $\frac{2 \sin ^{2} x}{\sin x \cos x}-\frac{1-\cos ^{2} x}{\sin x \cos x}$
$2 \tan x-\frac{\sin ^{2} x}{\sin x \cos x}$	M1dep	$\operatorname{simplification~to~one~step~from~}$   or   $\frac{2 \tan x-\tan x}{\cos x}-\frac{\sin x}{\cos x}$   with M1 seen
2tan $x-\tan x$ and tan $x$   with M2 seen	A1	SC3 equates given expression to   tan $x$ and cross multiplies to   show equivalence with full   working shown


Additional Guidance	
Equating given expression to tan $x$ and cross multiplying can	
score SC3 or M1M0A0	
eg1 Alt 1	
$\frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x}=\tan x$	
$2 \sin ^{2} x-1+\cos ^{2} x=\tan x \sin x \cos x$	
$2 \sin ^{2} x-1+1-\sin ^{2} x=\tan x \sin x \cos x$ (scores M1 here for	M1, M0,
LHS)	A0


eg2	
$\frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x}=\tan x$	
$2 \sin ^{2} x-1+\cos ^{2} x=\tan x \sin x \cos x$	
$2 \sin ^{2} x-1+1-\sin ^{2} x=\tan x \sin x \cos x$	
$\sin ^{2} x=\tan x \sin x \cos x$	
$\sin ^{2} x=\frac{\sin x}{\cos x} \sin x \cos x$	
$\sin ^{2} x=\sin ^{2} x$	SC3
Use of $\sin x=\frac{\text { opp }}{\text { hyp }}$ etc	$\begin{gathered} \text { M0, M0, } \\ \text { A0 } \end{gathered}$
Allow $\sin$ or s for $\sin x$ etc	
Condone $\sin x^{2}$ for $\sin ^{2} x$ etc	
Allow any letter for $x$	
Alts 1 and 2	
For A1 $\overline{\cos x}$ is implied by $\overline{\sin x \cos x}$ with cancelling shown	

(b)

135 and 315	B2	B1 135 with no other solutions   [0, 360]   with no other solutions [0,
or 315 with no other solutions [0,		
$360]$		
SC1 135 and 315 with one other		
solution [0, 360]		


Additional Guidance	
Mark the answer line unless blank   eg 135 and 315 in working with 135 on answer line	B1
-45 and 135 and 315	B2
-45 and 135	B1
Ignore incorrect solutions outside the range $[0,360]$   eg 135 and 315 and -90	B2
135 and 225 and 315	SC1


Both answers embedded ie $\tan 135 \tan 315$	B1
0 and 135 and 225 and 315	B0
45 and 135	B0
225 and 315	B0

Q3.

Answer	Mark	Comments
Alternative method $1 \quad$ (LHS $\rightarrow$ RHS)		
$\sin ^{2} x-3\left(1-\sin ^{2} x\right)$	M1	Must see ( $1-\sin ^{2} x$ )
$\begin{aligned} & \sin ^{2} x-3+3 \sin ^{2} x=4 \sin ^{2} x- \\ & 3 \end{aligned}$	A1	Must see correct expansion   SC1 Correct rearrangement of given   identity to $3 \sin ^{2} x+3 \cos ^{2} x=3$   and $3\left(\sin ^{2} x+\cos ^{2} x\right)=3$   and $\sin ^{2} x+\cos ^{2} x=1$


Alternative method $2 \quad$ (LHS $\rightarrow$ RHS)		
$1-\cos ^{2} x-3 \cos ^{2} x=1-4$   $\cos ^{2} x$	M1	Must see $\left(1-\cos ^{2} x\right)$ and $(1-$   $\left.\sin ^{2} x\right)$
$=1-4\left(1-\sin ^{2} x\right)$	A1	Must see correct expansion   SC1 Correct rearrangement of   given identity to $3 \sin ^{2} x+3 \cos ^{2}$   $x=3$ and $3\left(\sin ^{2} x+\cos ^{2} x\right)=3$   and $\sin ^{2} x+\cos ^{2} x=1$
$1-4+4 \sin ^{2} x=4 \sin ^{2} x-3$		


Alternative method $3 \quad$ (RHS $\rightarrow$ LHS)		
$4 \sin ^{2} x-3\left(\sin ^{2} x+\cos ^{2} x\right)$	M1	Must see $\left(\sin ^{2} x+\cos ^{2} x\right)$
$\left.4 \sin ^{2} x-3 \sin ^{2} x-3 \cos ^{2} x\right)$		Must see correct expansion
$=\sin ^{2} x-3 \cos ^{2} x$	A1	SC1 Correct rearrangement of   given identity to $3 \sin ^{2} x+3 \cos ^{2}$   $x=3$
		and $3\left(\sin ^{2} x+\cos ^{2} x\right)=3$   and $\sin ^{2} x+\cos ^{2} x=1$


Alternative method $4 \quad$ (RHS $\rightarrow$ LHS)		
$4\left(1-\cos ^{2} x\right)-3=4-4 \cos ^{2}$   $x-3$	M 1	Must see $\left(1-\cos ^{2} x\right)$ and $\sin ^{2} x$   $+\cos ^{2} x$ and correct expansion
$=1-4 \cos ^{2} x$		
$=\sin ^{2} x+\cos ^{2} x-4 \cos ^{2} x$		
$=\sin ^{2} x-3 \cos ^{2} x$	A1	SC1 Correct rearrangement of   given identity to 3 $\sin ^{2} x+3 \cos ^{2}$   $x=3$   and 3 $\left(\sin ^{2} x+\cos ^{2} x\right)=3$   and $\sin ^{2} x+\cos ^{2} x=1$



Additional Guidance	
As shown in the mark scheme, allow = signs but they may be   seen (correctly) as the identity symbol	
= signs may be implied (eg working down the page, line by line)	
To give M1 the working must not need any further identities   applying	
The other side of the identity may be seen throughout working in   Alts 1 to 4	
However, full working on one side of the identity is needed for   M1 A1	
eg (Alt 2) $1-\cos ^{2} x-3 \cos ^{2} x=4 \sin ^{2} x-3$	
$1-4 \cos ^{2} x=4 \sin ^{2} x-3$	M1
$1-4\left(1-\sin ^{2} x\right)=4 \sin ^{2} x-3$	A0
$1-4+4 \sin ^{2} x=4 \sin ^{2} x-3$	
(with $4 \sin ^{2} x-3=4 \sin ^{2} x-3$ it would be M1 A1)	


Other examples may be seen, escalate if necessary	
Allow any variable or mixed variables or no variables	
Allow $(\sin x)^{2}$ for $\sin ^{2} x$ and $(\cos x)^{2}$ for $\cos ^{2} x$   Allow $\mathrm{s}^{2}$ for $\sin ^{2} x$ and $\mathrm{c}^{2}$ for $\cos ^{2} x$	
$\begin{aligned} & \text { Do not allow } \sin x^{2} \text { for } \sin ^{2} x \text { (but could still gain M1) } \\ & \text { eg1 Alt } 1 \sin ^{2} x-3\left(1-\sin ^{2} x\right. \text { ) } \\ & \quad=\sin ^{2} x-3+3 \sin x^{2}=4 \sin x^{2}-3 \\ & \text { eg1 Alt } 1 \sin x^{2}-3\left(1-\sin ^{2} x\right) \\ & \quad=\sin ^{2} x-3+3 \sin x^{2}=4 \sin x^{2}-3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \\ & \text { M0 } \\ & \text { A0 } \end{aligned}$
Do not allow recovery of missing brackets as this is a proof	
SC1 Instead of factorisation, they can divide by 3	
Other examples of SC1 may be seen where the identity is assumed to be correct and correct working with use of $\sin ^{2} x+$ $\cos ^{2} x=1$ is seen	

(b)

Alternative method 1		
$\begin{aligned} & \sin ^{2} x=\frac{3}{4} \text { or } \sin x=\frac{\sqrt{3}}{2} \\ & \text { or } \sin x=\sqrt{\frac{3}{4}} \\ & \text { or } 60 \text { or } 120 \end{aligned}$	M1	oe eg $(\sin x)^{2}=\frac{3}{4}$   Allow $0.86 \ldots$ or 0.87 for $\frac{\sqrt{3}}{2}$   Must have $\sin ^{2} x=$ or $\sin x=$ or $\mathrm{sin}^{-1}$   Allow s for $\sin x$   Do not allow $\sin x^{2}$ for $\sin ^{2} x$ but may be recovered
$\sin x=-\frac{\sqrt{3}}{2}$ or $\sin x=-$ $\sqrt{\frac{3}{4}}$   or 240 or 300 or -60	M1	oe Allow $-0.86 \ldots$ or -0.87 for $-\frac{\sqrt{3}}{2}$
60 and 120 and 240 and 300 with no other angles in range	A2	A1 60 and 120 or 240 and 300

Alternative method 2

$\begin{aligned} & \tan ^{2} x=3 \text { or } \tan x=\sqrt{3} \\ & \text { or } 60 \text { or } 240 \end{aligned}$	M1	oe eg $(\tan x)^{2}=3$   Allow 1.73... for 3   Must have $\tan ^{2} x=$ or $\tan x=$ or tan-1   Allow t for $\tan x$   Do not allow $\tan x^{2}$ for $\tan ^{2} x$ but may be recovered
$\begin{aligned} & \tan x=-\sqrt{3} \\ & \text { or } 120 \text { or } 300 \text { or }-60 \end{aligned}$	M1	Allow -1.73... for - $\sqrt{3}$
60 and 120 and 240 and 300 with no other angles in range	A2	A1 60 and 240 or 120 and 300


Alternative method 3		
$\begin{array}{l}\cos ^{2} x=\frac{1}{4} \quad \text { or } \cos x=\frac{1}{2} \\ \text { or } \cos x=\sqrt{\frac{1}{4}} \\ \text { or } 60 \text { or } 300\end{array}$	M1	$\begin{array}{l}\text { oe eg }(\cos x)^{2}=\frac{1}{4} \\ \text { Must have } \cos ^{2} x=\text { or } \cos x=\text { or } \\ \cos ^{-1} \\ \text { Allow c for } \cos x \\ \text { Do not allow } \cos x^{2} \text { for } \cos ^{2} x\end{array}$
may be recovered		


Additional Guidance	
Ignore any solutions outside of $0<x<360$ ie 0 and 360 are outside the range and can be ignored	
All four solutions with extra solutions in range, $0<x<360$, are penalised one accuracy mark $\begin{array}{\|llllll\|} \hline \text { eg } 60 & 90 & 120 & 150 & 240 & 300 \end{array}$   Only penalise extra solutions in range when all four correct solutions are given	M1 M1 A1


Answer line blank, award any marks gained from working lines	
If angles are found in working lines but only some are listed on answer line   award any method marks gained from the working lines award any accuracy marks gained from the answer line eg1 Working lines $\sin x= \pm \frac{\sqrt{3}}{2} \quad 60$ and 120 and 240 and 300   Answer line 60 and 120 and 240   eg2 Working lines tan $x=\sqrt{3} \quad 60 \quad 240$   Answer line 60   eg3 Working lines $\sin x=\frac{\frac{\sqrt{3}}{2}}{2} 60 \quad 120 \quad \sin x=-^{\frac{\sqrt{3}}{2}} 300$   Answer line 300	M1 M1   A1   M1 M0   A0   M1 M1   A0
Answers only can score up to 4 marks    All 4 correct $\rightarrow 4$ marks 3 correct $\rightarrow 3$ marks   2 correct $\rightarrow 2$ marks 1 correct $\rightarrow 1$ mark	
M1 M0 A1 or M0 M1 A1 are possible $\begin{array}{llll} \text { eg1 } & \sin x=\frac{\sqrt{3}}{2} 60 & 120 \\ \text { eg1 } & \sin x=-\frac{\sqrt{3}}{2} & 240 & 300 \end{array}$	$\begin{aligned} & \text { M1 M0 } \\ & \text { A1 } \\ & \text { M0 M1 } \\ & \text { A1 } \end{aligned}$
Embedded answers can score up to M1 M1 A0	
Working in rads or grads can score M marks if method seen	

Q4.

Answer	Mark	Comments
Alternative method 1		
$\frac{\sin \theta-\sin ^{3} \theta}{\cos ^{3} \theta} \equiv \frac{\sin \theta\left(1-\sin ^{2} \theta\right)}{\cos ^{3} \theta}$	M1	
$\frac{\sin \theta-\cos ^{2} \theta}{\cos ^{3} \theta}$	M1	oe eg $\sin \theta\left(\sin ^{2} \theta+\cos ^{2} \theta-\sin ^{2}\right.$   $\theta)$


$\frac{\sin \theta \cos ^{2} \theta}{\cos ^{3} \theta} \equiv \frac{\sin \theta}{\cos \theta} \equiv \tan \theta$	A 1	


Alternative method 2		
$\frac{\sin \theta-\sin ^{3} \theta}{\cos ^{3} \theta} \equiv \frac{\sin \theta\left(1-\sin ^{2} \theta\right)}{\cos ^{3} \theta}$	M1	
$\frac{\sin \theta\left(1-\sin ^{2} \theta\right)}{\cos \theta\left(1-\sin ^{2} \theta\right)}$	A1	
$\frac{\sin \theta\left(1-\sin ^{2} \theta\right)}{\cos \theta\left(1-\sin ^{2} \theta\right)} \equiv \frac{\sin \theta}{\cos \theta} \equiv \tan \theta$	A1	

Q5.

Answer	Mark	Comments
Use of $\tan \theta=\frac{\sin \theta}{\cos \theta}$	M1	eg $1-\frac{\sin \theta}{\cos \theta} \sin \theta \cos \theta$
$1-\sin ^{2} \theta$	M1dep	oe eg $\sin ^{2} \theta+\cos ^{2} \theta-\sin \theta \sin \theta$
$\cos ^{2} \theta$	A1	Condone $(\cos \theta)^{2}$ but do not   allow $\cos \theta^{2}$

Q6.

Answer	Mark	Comments
$\tan \theta=\frac{\sin \theta}{\cos \theta}$   $\frac{1}{\tan \theta} \equiv \frac{\cos \theta}{\sin \theta}$	M1	oe
Denominator $=\sin \theta \cos \theta$	M1Dep	oe
$\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}$		
$\frac{\left(\sin ^{2} \theta+\cos ^{2} \theta \equiv 1\right) \text { and }}{\frac{1}{\sin \theta \cos \theta}}$	A1	All steps clearly shown

## Mark schemes

Q1.

Answer	Mark	Comments
$\tan x=( \pm) \frac{1}{\sqrt{3}}$ or $\tan x=( \pm) \frac{\sqrt{3}}{3}$	M1	
30 with no incorrect solutions   within the given range	A1	ignore correct solutions outside   the given range.

Q2.

Answer	Mark	Comments
30 and 150   with no other solutions [0,   $360]$		B1 30 with no other solutions [0,   $360]$
	B2	or   150 with no other solutions [0,   $360]$   SC1 30 and 150 with one other   solution [0, 360]

Q3.

Answer	Mark	Comments
$300^{\circ}$	B 1	

Q4.

Answer	Mark	Comments
$\cos ^{2} \theta=\frac{1}{3}$	B1	May be implied in working   $\frac{2}{3} \quad$ or $\quad \tan ^{2} \theta=2$
$\cos \theta=( \pm) \sqrt{\frac{1}{3}}$	M 1	oe eg $\cos \theta=( \pm)[0.57(7), 0.6]$
		$\sin \theta=( \pm) \sqrt{\frac{2}{3}}$ oe or  
	$\tan \theta=( \pm) \sqrt{2}$ oe	


$[54.7,54.7602]$	A1	
$[125.2398,125.3]$	A1ft	ft 180 - their [54.7, 54.7602] if   M1 gained   Correct or ft   A0 if an incorrect solution [0,   180] also seen

Q5.

Answer	Mark	Comments
$\tan \theta(\tan \theta+3)$ or $\tan \theta=$ 0 or $\sin \theta(\sin \theta+3 \cos \theta)$ or $\sin$ $\theta=0$	M1	oe eg $t(t+3)$   Must be correct
180	A1	
$\tan \theta=-3$	A1	
[108, 108.44]	A1	
[288, 288.44]	B1ft	ft 180 + any angle (other than 0 and 90 ) if in range

Q6.

Answer	Mark	Comments
0	B1	allow in words eg none or zero

