3 COORDINATE GEOMETRY - Further Maths

Section 3.1 - 3.6

Q1. The point $(-6,-4)$ lies on a straight line with gradient $\frac{3}{2}$
Work out the coordinates of the point where the line crosses the y-axis.

Q2. The equation of the line through B, P and A is $\quad 4 x+5 y=40$
$B P: P A=2: 3$

Work out the area of triangle $O B P$.
(4 marks)

Q3. The equation of line $A B$ is $y=12-2 x$ The area of triangle $O C A$ is 24 square units.

Work out the coordinates of C.
(5 marks)

Q4. $P(-3,-10)$ and $Q(a, b)$ are points on a straight line with gradient 12 Work out one possible pair of integer values for a and b.

Q5. L is a straight line with equation $a x+b y=c \quad$ where a, b and c are non-zero integers.
(a) At which point does L intersect the x-axis? Circle your answer.
$\left(\frac{a}{c}, 0\right)$
$\left(\frac{c}{a}, 0\right)$
$\left(\frac{b}{c}, 0\right)$
$\left(\frac{c}{b}, 0\right)$
(1 mark)
(b) What is the gradient of a line parallel to L ? Circle your answer.
$-\frac{b}{a}$
$\frac{b}{a}$
$-\frac{a}{b}$
$\frac{a}{b}$
(1 mark)

Q6. A straight line passes through the points $(-4,7),(6,-5)$ and $(8, t)$
Use an algebraic method to work out the value of t.
You must show your working.

Q7. Here is a sketch of quadrilateral $P Q R S$. M is the midpoint of $P S$.

Use gradients to show that $M R$ is parallel to $P Q$.

Q8.
Line A has equation $y+4 x=6$
Line B is parallel to line A and passes through the point $(2,1)$
The point $(d, 2 d)$ lies on line B. Work out the value of d.

Q9. Work out the equation of the straight line that is parallel to the line $2 y=x$ and intersects the x-axis at $(4,0)$

Q10. M is the midpoint of the line $A B$.

Work out the values of p and r.
(2 marks)

Q11. $A B C$ is a straight line with $A B: B C=5: 2$

Work out the coordinates of C.

Q12. Triangle $P Q R$ is bounded by the lines shown. Angle $P Q R=90^{\circ}$

Work out the x-coordinate of R.

Q13. A and B are points on the line $y=3 x+2$
B, C and $D(5,0)$ are points on the line L . $O A: A C=1: 4$

Not drawn accurately

Work out the x-coordinate of B.

Section 3.7-3.8

Q1. $A(-2,5)$ and $B(4,13)$ are points on a circle. $A B$ is a diameter.
Work out the equation of the circle.
Give your answer in the form $\quad(x-a)^{2}+(y-b)^{2}=c \quad$ where a, b and c are integers.(3 marks)

Q2. The equations of the two circles shown are $\quad x^{2}+y^{2}=100$ and $x^{2}+y^{2}=36$

Work out the shaded area. Give your answer as an integer multiple of π.

Q3. The circle $x^{2}+y^{2}=25$ touches each side of the square as shown.

Not drawn
accurately

Work out the total shaded area.

Q4. $x^{2}-2 x+y^{2}-6 y=0$ is the equation of a circle.
By writing the equation in the form $\quad(x-a)^{2}+(y-b)^{2}=r^{2}$
work out the centre and radius of the circle.

Q5. A circle, centre $(0,0)$ has circumference 20π Work out the equation of the circle. (2 marks)

Q6. $\quad A$ is $(-4,3)$ and B is $(2,11)$
$A B$ is a diameter of the circle.

(a) Work out the coordinates of the centre of the circle.
(b) Work out the radius of the circle.
(c) Write down the equation of the circle.
(d) P is another point on the circle. The gradient of the line $A P$ is 2. Write down the gradient of the line $P B$.

Q7. Two circles, each with centre O, are shown. The equations of the circles are

$$
x^{2}+y^{2}=289 \text { and } x^{2}+y^{2}=121
$$

Not drawn accurately

Work out the perimeter of the shaded section $A B C D$.

Q8. O is the point $(0,0)$ and P is the point $(2,3) \quad O P$ is a radius of a circle.
Work out the equations of the two possible circles.

Q9. A circle, centre C, touches the y-axis at the point $(0,2)$
The line $y=k$ intersects the circle at the points $(1, k)$ and $(5, k)$

Work out the equation of the circle.

Section 3.9

Q1. A circle, centre $C(4,-2)$, passes through the origin and point $A(8,0)$ on the x-axis.
The tangent at A is shown.

Not drawn

 accurately(a) Work out the equation of the circle.
(b) Work out the equation of the tangent to the circle at A.

Q2. A circle has centre C and equation $(x-1)^{2}+(y+3)^{2}=25$
$P(4,-7)$ and Q are points on the circle.
The tangent at Q is parallel to the x-axis.
The tangents at P and Q intersect at point R.

Not drawn accurately
(a) Write down the coordinates of C.
(b) Show that the equation of the tangent at Q is $y=2$
(c) Work out the x-coordinate of R.

Q3. A circle has equation $x^{2}+y^{2}=29$
P is the point $(-5,2)$
(a) Show that P is on the circle.
(b) The tangent to the circle at P intersects the x-axis at point Q.

Work out the x-coordinate of Q.
You must show your working.

Q4. The point P lies on the circle $x^{2}+y^{2}=16$
The line $O P$ is at an angle of 60° to the positive x-axis.

Not drawn
accurately
(a) Show that the coordinates of point P are $(2,2 \sqrt{3})$
(b) Work out the equation of the tangent to the circle at P.

Write your answer in the form $\quad x+a y=b \quad$ where a and b are constants.

