<u>3 COORDINATE GEOMETRY – Further Maths</u>

Jump to: Section 3.1 - 3.6Section 3.7 - 3.8Section 3.9

Section 3.1 - 3.6

Mark schemes

Q1.

Answer	Mark	Comments
Alternative method 1		
$-4 = \frac{3}{2} \times -6 + c \text{ or } c = 5$ $y4 = \frac{3}{2}(x6)$	M1	oe
(0, 5)	A1	

Alternative method 2		
Correctly adding at least 1 multiple of 2 to the right and 3 up	M1	oe needs to be added to both vertical and horizontal. Could be seen in coordinates eg $(-4, -1)$
eg $-6 + 2 = -4$ and $-4 + 3 = -4$		could be 1 right and 1.5 up
		or y coordinate of $-4 + 1.5 \times 6$
(0, 5)	A1	

Alternative method 3		
Sketch drawn with straight line passing through (–6, –4) and (0, 5) with steps shown.	M1	just a line passing through 5 seen on the axis is enough for M1 but won't gain A1 unless written as coordinates
(0, 5)	A1	answer could be embedded in diagram
Additional Guidance		

Q2.

Answer	Mark	Comments
Alternative method 1		
(x-coordinate of $A =$) 10 and (y-coordinate of $B =$) 8	B1	May be implied on diagram eg 10 written next to <i>A</i> and 8 written next to <i>B</i>
(x-coordinate of $P =$)	M1	oe
$\frac{2}{2+3}$ × their 10		their 10 must be their <i>x</i> - coordinate of <i>A</i>
or $\frac{2 \times \text{their } 10 + 3 \times 0}{2 + 3}$ or 4		May be seen on diagram
(area of triangle OBP =)	M1dep	ое
$\frac{1}{2}$ × their 8 × their 4		their 8 must be their <i>y</i> -coordinate of <i>B</i>
16	A1ft	ft B0M2

Alternative method 2		
(x-coordinate of $A =$) 10 and (y-coordinate of $B =$) 8	B1	May be implied on diagram eg 10 written next to <i>A</i> and 8 written next to <i>B</i>
(area of triangle OAB =)	M1	oe
$\frac{1}{2}$ × their 10 × their 8 or 40		
(area of triangle OBP =)	M1dep	2
$\frac{2}{2+3}$ × their 40		oe eg their 40 – $2 + 3 \times \text{their } 40$
16	A1ft	ft B0M2

Alternative method 3		
(x-coordinate of $A =$) 10 and (y-coordinate of $B =$) 8	B1	May be implied on diagram eg 10 written next to <i>A</i> and 8 written next to <i>B</i>
(area of triangle OAB =)	M1	oe

$\frac{1}{2}$ × their 10 × their 8 or 40		
(y-coordinate of $P =$)	M1dep	oe
$\frac{3}{2+3}$ × their 8 or 4.8		their 8 must be their <i>y</i> -coordinate of <i>B</i>
and		y-coordinate of <i>P</i> may be seen
(area of triangle OPA =)		on diagram
$\frac{1}{2}$ × their 10 × their 4.8 or 24		
and		
(area of triangle OBP =)		
their 40 – their 24		
16	A1ft	ft B0M2

Alternative method 4		
(x-coordinate of $A =$) 10 and (y-coordinate of $B =$) 8	B1	May be implied on diagram eg 10 written next to <i>A</i> and 8 written next to <i>B</i>
$(AB =) \sqrt{\text{their } 10^2 + \text{their } 8^2}$	M1	oe
or $\sqrt{100 + 64}$ or $\sqrt{164}$ or $2\sqrt{41}$		
or 12.8()		
and		
$(BP =)$ $\frac{2}{2+3}$ x their 12.8() or 5.12() and (angle <i>OBP</i> =) tan ⁻¹ $\frac{\text{their 10}}{\text{their 8}}$ or 51.3()		their 10 must be their <i>x</i> - coordinate of <i>A</i> their 8 must be their <i>y</i> -coordinate of <i>B</i>
(area of triangle OBP =)	M1dep	oe
$\frac{1}{2}$ × their 8 × their 5.12		their 8 must be their <i>y</i> -coordinate of <i>B</i>
× sin their 51.3		
16	A1ft	ft B0M2

Additional Guidance	
A = 10 and B = 8	B1
A (8, 0) and B (0, 10) is B0 but can subsequently score up to M2A1ft (answer 16)	
<i>A</i> (0, 10) and <i>B</i> (8, 0) is B0 but can score up to M2A1ft if uses	
x-coordinate of A as 10 and y-coordinate of B as 8 (answer 16)	
<i>A</i> (0, 8) and <i>B</i> (10, 0) is B0 but can score up to M2A1ft if uses	
x-coordinate of A as 8 and y-coordinate of B as 10 (answer 16)	
Area triangle <i>OBP</i> may be seen as the sum of two right-angled triangles	
Area triangle OBP may be seen as	
area trapezium OBPX – area triangle OPX	
X is on the x-axis with PX perpendicular to the x-axis	
Allow marks for valid working seen even if not subsequently used	
15.9(…) → answer 16	4 marks
Answer 15.9(…)	B1M2A0

Q3.

Answer	Mark	Comments
Alternative method 1		
A (6, 0) or $x = 6$ (for A)	B1	May be on diagram or be implied
$\frac{1}{2}$ × their 6 × y = 24	M1	
<i>y</i> = 8	A1ft	Only ft B0 M1
their 8 = $12 - 2x$	M1	
<i>y</i> = 2	A1ft	ft their y
		SC2 Answer (8, 2) with no valid working
		SC1 <i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>)

Alternative method 2		
A (6, 0) or $x = 6$ (for A)	B1	May be on diagram or be implied
<i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>)	M1	
and		
(area $OAB =$) $\frac{1}{2} \times$ their 6 × 12		
or 36		
and		
$\frac{1}{2} \times 12 \times x = $ their 36 – 24		
<i>x</i> = 2	A1ft	Only ft B0 M1
y = 12 – 2 × their 2	M1	
<i>y</i> = 8	A1ft	ft their y
		SC2 Answer (8, 2) with no valid working
		SC1 <i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>)
Alternative method 3	ſ	
A (6, 0) or x = 6 (for A)	B1	May be on diagram or be implied
$\frac{1}{2}$ × their 6 × <i>y</i> = 24	M1	
<i>y</i> = 8	A1ft	Only ft B0 M1
<i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>)	M1	
and		
(area $OAB =$) $\frac{1}{2} \times$ their 6 × 12		
or 36		
and		
$\frac{1}{2} \times 12 \times x = $ their 36 – 24		
x = 2	A1ft	Only ft B0 with 2 nd M1 gained
		SC2 Answer (8, 2) with no valid working

		SC1 <i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>)
Alternative method 4		
A (6, 0) or $x = 6$ (for A)	B1	May be on diagram or be implied
<i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>)	M1	
and		
(area $OAB =$) $\frac{1}{2} \times$ their 6 × 12		
or 36		
and		
$\frac{1}{2} \times 12 \times x = $ their 36 – 24		
<i>x</i> = 2	A1ft	Only ft B0 M1
$\frac{1}{2}$ × their 6 × <i>y</i> = 24	M1	
<i>y</i> = 8	A1ft	Only ft B0 with 2 nd M1 gained
		SC2 Answer (8, 2) with no valid working
		SC1 <i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>)

Alternative method 5		
A (6, 0) or x = 6 (for A)	B1	May be on diagram or be implied
<i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>)	M1	
and		
(area $OAB =$) × their 6 × 12		
or 36		
and		
24 their 36 ×12		
<i>y</i> = 8	A1ft	Only ft B0 M1
<i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>)	M1	
and		
(area $OAB =$) $\frac{1}{2} \times$ their 6 ×		

12		
or 36		
and		
$\frac{\text{their } 36 - 24}{\text{their } 36} \times \text{their } 6$		
<i>x</i> = 2	A1ft	Only ft B0 with 2 nd M1 gained
		SC2 Answer (8, 2) with no valid working
		SC1 <i>B</i> (0, 12) or <i>y</i> = 12 (for <i>B</i>)

Q4.

Answer	Mark	Comments
Any pair of integer values for a and b for which $b = 12a + 26$	B2	B1 Correct equation in any form $\frac{b10}{a3} = 12 \text{ or } b + 10 = 12(a + 3)$ or $\frac{y10}{x3} = 12 \text{ or } y + 10 = 12(x + 3)$ or $b = 12a + c \text{ and } c = 26$ or $y = 12x + c \text{ and } c = 26$ or $-3 + k \text{ and } -10 + 12k \text{ where } k \text{ is a non-zero integer}$

Additional Guidance	
Examples of B2 responses	B2
a = -4 and $b = -22$	
or $a = -2$ and $b = 2$	
or $a = -1$ and $b = 14$	
or $a = 0$ and $b = 26$	
or $a = 1$ and $b = 38$	
or $a = 2$ and $b = 50$	

or $a = 3$ and $b = 62$	
or $a = 4$ and $b = 74$	
a = -3 and $b = -10$ is point <i>P</i> so will not score B2 (B1 possible)	
-3 + 1 and -10 + 12	
−3 + 2 and −10 + 24	

Q5.

Answer	Mark	Comments
	B1	
	B1	
	Answer	B1

Q6.

Answer	Mark	Comments
Alternative method 1		
Intention to work out gradient or reciprocal of gradient	M1	Condone one sign error in the calculation, eg
or Intention to work out the equation of the straight line		$\frac{-5-7}{64} \text{ or } \frac{-5-t}{6-8} \text{ or}$ $\frac{7-t}{-4-8} \text{ or}$ -1.2 oe eg 7 = -4m + c or -5 = 6m + c eg y - 7 = m(x4)
A correct value for <i>m</i> or a correct expression for <i>m</i> and an expression to calculate the value of <i>t</i> or the value of <i>c</i> or	M1dep	eg. $(m =)$ $\frac{75}{-4 - 6}$ or $(m =)$ $\frac{-6}{5}$ oe $\frac{t5}{8 - 6} = \frac{-5 - 7}{64}$ or $t = \frac{-6}{5}(8) + (7 - \frac{24}{5})$
<i>m</i> = -1.2 and <i>c</i> = 2.2		$7 = \frac{-6}{5}(-4) + c$ or $-5 = \frac{-6}{5}(6)$

		+ <i>C</i>
$(t =) -7.4 \text{ or } -7\frac{2}{5} \text{ or } \frac{-37}{5}$	A1	

Alternative method 2		
-4 to 6 is +10 and 7 to −5 is −12	M1	oe Condone a sign error
6 to 8 is +2 and -5 to t is $\frac{-12}{5}$	M1	oe
$(t =) -7.4$ or $-7\frac{2}{5}$ or $\frac{-37}{5}$	A1	

Alternative method 3		
$\sqrt{[(-4 - 6)^2 + (75)^2]}$ (= $\sqrt{244}$) and	M1	Correct use of Pythagoras and identifying the correct displacements
stating −4 to 6 is 10 and 6 to 8 is 2		
$\sqrt{[(6-8)^2 + (-5-t)^2]} = (\sqrt{244})$ ÷ 5	M1	ft their 244
$(t =) -7.4 \text{ or } -7^2/_5 \text{ or } \frac{-37}{5}$	A1	

Additional Guidance

-7.4 seen on answer line is 3 marks

-7.4 seen in the working but sign error on answer line is 3 marks

'Algebraic method' means the question must not be done graphically ... although a diagram is fine when used to do the gradient calculations

$$\frac{t-5}{8-6} = \frac{t-7}{8-4}$$

-6 8--4 seen implies M1 M1

Look at any diagram they may have drawn for evidence of the alt 2 method

 $\frac{7--5}{-4-6}$ (correct expression) = 1.2 (error) followed by 7 = (1.2)(-4) + c

scores M1 M1 but will not lead to a correct final answer, so A0

m = -1.2, but they use 1.2 instead ... 7 = 1.2(-4) + c giving c = 11.8 is M1 M1 A0

m = -1.2, then t = -1.2 + 11.8 = 2.2 scores M1 M1 A0 because this is a

correct method for calculating *c*, and so scores the 2nd M1, even though they think they are calculating *t* $m = \frac{-5-7}{6--4} = \frac{-12}{10} - \frac{-12}{10} \times 2 = \frac{-24}{20} = \frac{-6}{5} = -1.2 \text{ so } t = -5 - 1.2 = -6.2$ M1 M1 A0 ... because the only error is $\frac{-12}{10} \times 2 = \frac{-24}{20}$... if this had been -2.4 then *t* = -7.4

Q7.

Answer	Mark	Comments
$\left(\frac{4+6}{2}, \frac{1+9}{2}\right)$ or (5, 6)	M1	oe eg $\left(4 + \frac{6-4}{2}, 1 + \frac{11-1}{2}\right)$
		may be on diagram
$\frac{13}{4-10} \text{ or } \frac{4}{-6}$ or $\frac{0-\text{their } 6}{14-\text{their } 5} \text{ or } \frac{-6}{9}$	M1	oe method for at least one gradient or at least one unsimplified gradient seen $\frac{-3-1}{10-4} \text{ or } \frac{-4}{6}$ or $\frac{\text{their } 6-0}{\text{their } 5-14} \text{ or } \frac{6}{-9}$ $\frac{6-0}{5-14} \text{ or } \frac{6}{-9}$ is M1M1
$\frac{13}{4-10} \text{ or } \frac{4}{-6}$ or $\frac{0-6}{14-5} \text{ or } \frac{-6}{9}$ and shows that the gradients are equal	A1	oe method for both gradients or two unsimplified gradients seen and gradients shown to be equal $eg = \frac{4}{-6}$ and $\frac{-6}{9}$ and these are both $-\frac{2}{3}$ SC2 (5, 6) and at least one gradient given as $-\frac{2}{3}$ SC1 at least one gradient given $as -\frac{2}{3}$

Additional Guidance	
Mark intention for 1st M1 eg condone 5, 6 M1	

10

$\frac{4}{-6} = -\frac{2}{3}$ and $\frac{-6}{9} = -\frac{2}{3}$	M2, A1
$\frac{13}{4-10} = -\frac{2}{3}$ and $\frac{0-6}{14-5} = -\frac{2}{3}$	M2, A1
$\frac{4}{-6} = \frac{-6}{9}$	M2, A1
$\frac{4}{-6}$ and $\frac{-6}{9}$ and parallel	M2, A0
$\frac{4}{6}$ is 2nd M0 unless recovered to $\frac{4}{-6}$	
$\frac{4}{6} \frac{4}{16} \frac{4}{16} \frac{6}{9} \frac{-6}{9} $	
both gradients = $\frac{2}{3}$ with no method or unsimplified gradients seen cannot score the A mark	
$\frac{4}{-6}x$ or $\frac{-6}{9}x$ do not score 2nd M1 unless recovered	
Equation of a line does not score 2nd M1 unless a method or unsimplified gradient seen	
Using the reciprocals of gradients can score a maximum of M1 M0 A0	
Allow -0.66 or -0.67 for $-\frac{2}{3}$ and $\frac{4}{-6}$ etc	
Ignore conversion attempt after a correct fraction is seen	
or method for $\frac{4}{-6}$	(2nd) M1
1 = 4m + c and $-3 = 10m + c$	
4 = -6m	
$\frac{4}{-6} = m \qquad (\text{similar method possible for } \frac{-6}{9})$	

Q8.

Answer	Mark	Comments
Alternative method 1		
y + 4x = c or y = -4x + c	M1	ое

or gradient = -4		c can be any value other than 6 may be implied
$1 + 4 \times 2 = c$ or $1 = (\text{their} -4) \times 2 + c$ or $c = 9$	M1	oe their -4 can only be 4 or $\frac{1}{4}$ implied by a correct equation of B eg $y - 1 = -4(x - 2)$ or $y + 4x = 9$ or $y = -4x + 9$
2d + 4d = their 9 or $2d =$ (their -4) d + their 9 or $6d =$ 9 or 9 ÷ 6	M1dep	oe substitution of $(d, 2d)$ into their equation of B equation with no algebraic denominator dep on 2nd M1
$\frac{3}{2}$ or $1\frac{1}{2}$ or 1.5	A1	oe eg $\frac{9}{6}$

Alternative method 2		
y + 4x = c or y = -4x + c	M1	oe
or gradient = -4		c can be any value other than 6
		may be implied
2d-1	M1	oe
$\overline{d-2}$ = their –4		1
		their –4 can only be 4 or $\overline{4}$
		may be implied
2d - 1 = their $-4(d - 2)$	M1dep	oe
or 6 <i>d</i> = 9		equation with no algebraic denominator
or 9 ÷ 6		
		dep on 2nd M1
$\frac{3}{1}$ or $\frac{1}{1}$	A1	9
$\overline{2}$ or $\overline{1}\overline{2}$ or 1.5		oe eg <mark>6</mark>

Additional Guidance		
Ignore simplification or conversion if correct answer seen		
Condone answer (1.5, 3) oe		

gradient = $-4x$ must be recovered	
3rd M1 Allow (d , 2 d) to be (x , 2 x) etc	
3rd M1 Do not allow use of $(2d, d)$ to be a misread	
A correct equation in d with no algebraic denominator implies M1M1M1	M1M1M1
eg $2d - 1 = -4(d - 2)$ or $2d = -4d + 9$ or $6d = 9$	
Alt 1 gradient = 4	MO
y = 4x - 7	M1
2d = 4d - 7 $d = 3.5$	M1A0
1	MO
Alt 1 gradient = 4	M1
$y = \frac{1}{4}x + \frac{1}{2}$	M1A0
$2d = \frac{1}{4}d + \frac{1}{2} \qquad d = \frac{2}{7}$	
gradient –4 followed by correct method using gradient 4 or $\frac{1}{4}$ for 2nd and 3rd marks can score a maximum of M2	MOM1M1
eg Alt 1 gradient -4 $1 = 4 \times 2 + c$ $2d = 4d - 7$	
gradient –4 followed by correct method using gradient 4 or $\frac{1}{4}$ for 2nd mark (but not the 3rd mark) can score a maximum of M1	MOM1MO
eg Alt 1 gradient -4 $y = \frac{1}{4}x + \frac{1}{2}$ (no further valid work)	

Q9.

Answer	Mark	Comments
(gradient =) 0.5 or $\frac{1}{2}$	M1	
0 = their 0.5 × 4 + c or $c = -2$	M1	ое
or $y - 0 =$ their $0.5(x - 4)$		
y = 0.5x - 2	A1	oe simplified equation
or $y = 0.5(x - 4)$		

Q10.

Answer	Mark	Comments
$p = 2.5$ or $\frac{5}{2}$ or $2\frac{1}{2}$	B1	
r = -5	B1	

Q11.

Answer	Mark	Comments	
Alternative method 1	Alternative method 1		
$5 + \frac{2}{5} \times (5 - 3)$	M1	oe	
$5.5 - \frac{2}{5} \times (7 - 5.5)$ or 4.9	M1	oe	
5.8 or 4.9	A1	ое	
(5.8, 4.9)	A1	oe	

Alternative method 2		
$\frac{x-3}{x-5} = \frac{5+2}{2}$	M1	oe
$\frac{7-y}{5.5-y} = \frac{5+2}{2}$	M1	oe
5.8 or 4.9	A1	oe
(5.8, 4.9)	A1	oe

Alternative method 3		
$\frac{2\times3+5\times x}{2+5} = 5$	M1	oe
$\frac{2\times7+5\times y}{2+5} = 5.5$	M1	oe
5.8 or 4.9	A1	ое
(5.8, 4.9)	A1	oe

Q12.

Answer	Mark	Comments
$(\text{gradient} =) -\frac{3}{2}$	M1	
$-1 \div \text{their} -\frac{3}{2} \text{ or } \frac{2}{3}$	M1	
$-1 = \text{their} \ \frac{2}{3} \times 3 + c$ or $c = -3$	M1dep	oe dep on 2nd M1
5 = their $\frac{2}{3}x$ + their -3	M1dep	dep on 2nd and 3rd M1
12	A1	

Q13.

Answer	Mark	Comments
10	B1	y-coordinate of c
		may be seen on the graph
$(-)\frac{\text{their 10}}{5}$ or $(-)2$	M1	± their gradient of L
$(y=) - \frac{\text{their 10}}{5}x + \text{their 10}$	M1dep	oe eg $y - 0 = -\frac{\text{their 10}}{5}(x - 5)$
		or $y - \text{their } 10 = -\frac{\text{their } 10}{5} (x - 0)$
		must use a negative gradient
their 10	M1dep	oe
5 + their 10 = 3x + 2		
or 5 <i>x</i> = 8		
1.6	A1ft	8
		oe eg 5
		ft B0M3

Additional Guidance	
A1ft values must be exact or rounded to 1 decimal place or	

15

better	
Ignore any y-coordinate of b calculated after working out the x-coordinate	
Assuming the lines are perpendicular can score a maximum of B1	
<i>y</i> -coordinate of $c = 8$	B0
8	M1
gradient L = $-\frac{8}{5}$	
$y = -\frac{8}{5}x + 8$	M1
$-\frac{8}{5}x+8=3x+2$	M1
1.3	A1ft
30	
(Note that the exact value is $\overline{23}$	

Section 3.7 – 3.8 Mark schemes

Q1.

Answer	Mark	Comments
Alternative method 1		
$(x-1)^2 + (y-9)^2 = 25$	B3	B2 $(x-1)^2 + (y-9)^2 = 5^2$
		or (1, 9) and radius = 5
		or (1, 9) and radius ² = 5 ²
		or (1, 9) and radius ² = 25
		B1 $(x-1)^2 + (y-9)^2 = k$
		or $(x)^2 + (y)^2 = 25$
		or $(x)^2 + (y)^2 = 5^2$
		or (1, 9)
		or $\frac{-2+4}{2}$ oe and $\frac{5+13}{2}$ oe
		or radius = 5 or radius ² = 5^2

			or radius ² = 25
--	--	--	-----------------------------

Alternative method 2 Uses perpendicular lines where (x, y) is a point on the circle

$\frac{y-5}{x-2} \times \frac{y-13}{x-4} = -1$	M1	oe eg $(y-5)(y-13) = -1(x+2)(x-4)$
$y^2 - 18y + 65 + x^2 - 2x - 8 = 0$	M1dep	oe equation of circle with brackets expanded and fractions eliminated eg $y^2 - 18y + 65 = -x^2 + 2x + 8$
$(x-1)^2 + (y-9)^2 = 25$	A1	

Additional Guidance		
$a = 1 b = 9 c = 25$ implies $(x - 1)^2 + (y - 9)^2 = 25$		
Alt 1 (1, 9) may be implied eg $x = 1 y = 9$ or 1, 9		
Alt 1 $(x + 3)^2 + (y + 4)^2 = 5^2$		
Alt 1 $(x - 1)^2 + (y - 9)^2 = 5$ (with no indication that radius = 5)		
Alt 1 <i>r</i> = 5	B1	
Alt 1 diameter = 10		
$(x - 1)^2 + (y - 9)^2 = 25$ in working lines with brackets expanded on answer line		

Q2.

Answer	Mark	Comments
$\pi \times 100 (\div 4)$ or $100\pi (\div 4)$ or 25π	M1	oe
or 25pi		
or		
$\pi \times 36 (\div 4)$ or $36\pi (\div 4)$ or 9π		
$\pi \times 100 \div 4 - \pi \times 36 \div 4$	M1dep	oe eg $\frac{100\pi - 36\pi}{4}$ or $\frac{64\pi}{4}$
16π	A1	SC2 2176π

Additional Guidance		
Use of circumference instead of area throughout M0M0A0		
Allow substitution of π = [3.14, 3.142] for M marks		
16π in working with eg 50.3 on answer line M2A0		
SC2 is for using radii of 100 and 36		
Omission of π in working must be recovered		

Q3.

Answer	Mark	Comments
$r = 5$ or $r^2 = 25$ or $r = \sqrt{25}$	B1	May be seen on diagram
or $d = 10$		
$(2 \times \text{their } r)^2 - \pi \times \text{their } r^2$	M1	
[21.45, 21.5] or 100 – 25π	A1ft	ft from B0 M1
		Allow 21 with working (uses 25π = 79)
		Ignore any units seen

Q4.

Answer	Mark	Comments
$(x - 1)^2 (-1)$ or $(y - 3)^2 (-3^2)$	M1	
$(x - 1)^2$ (- 1) and $(y - 3)^2$ (- 3 ²)	M1	
$(x - 1)^2 + (y - 3)^2 = 10$	A1	
Centre = (1, 3)	A1ft	ft from their equation if at least M1 earned
Radius = $\sqrt{10}$	A1ft	ft from their equation

Q5.

Answer	Mark	Comments
$x^2 + y^2 = 100$ or $x^2 + y^2 =$	B2	B1 radius = 10

|--|

Q6.

	Answer	Mark	Comments
(a)	$\left[\frac{-4+2}{2},\frac{3+11}{2}\right]$	M1	ое
	(-1, 7)	A1	SC1 for one coordinate correct
(b)	$(r^2 =) 3^2 + 4^2$ or $(r^2 =) 25$	M1	oe
	$(r^2 =) 3^2 + 4^2$ or $(r^2 =) 25$ or $(d^2 =) 6^2 + 8^2$ or $(d^2 =)$ 100		ft their centre
	(<i>r</i> = 5)	A1ft	SC1 for 10
(c)	$(x + 1)^2 + (y - 7)^2 = 25$	B1ft	oe
			ft their centre and radius
(d)	$-\frac{1}{2}$ or -0.5	B1	Accept $\frac{-1}{2}$, $\frac{1}{-2}$ or5
	1		11

Q7.

Answer	Mark	Comments
(radius =) $\sqrt{289}$ or 17	B1	
or		
(radius =) $\sqrt{121}$ or 11		
1	M1	oe
(4x) 2 x π x their 17 or 34 π or 17 π		their 17 can be 289
2		their 11 can be 121
or [106.76, 107] or [26.69, 26.71]		
or		
$\frac{1}{(4\times)} 2 \times \pi \times \text{their 11 or } 22\pi \text{ or}$ $\frac{1}{2}$		
or [69.08, 69.124] or [17.27,		

17.3]		
their 17 – their 11 or 6	M1	their 17 can be 289
		their 11 can be 121
		May be implied by 12 seen in next method mark
1	M1	their 17 can be 289
4 × 2 × π × their 17 + 1		their 11 can be 121
$\overline{4} \times 2 \times \pi \times$ their 11 +		
2 × their 6		
14π + 12 or [55.96, 56(.0)]	A1	SC2 42π or [131.88, 132]

Q8.

Answer	Mark	Comments
2 ² + 3 ² or 4 + 9 or 13	M1	oe eg $\sqrt{2^2+3^2}$
$x^2 + y^2 = 13$	A1	
$(x-2)^2 + (y-3)^2 = 13$	A1	

Q9.

Answer	Mark	Comments
(x-coordinate of C =) $\frac{5+1}{2}$ or 3	M1	may be implied
or (radius =) $\frac{5+1}{2}$ or 3		
(y-coordinate of $C =$) 2	M1	may be implied
$(x-3)^2 + (y-2)^2 = 9$	A1	allow $(x - 3)^2 + (y - 2)^2 = 3^2$

Section 3.9 Mark schemes

Q1.

	Answer	Mark	Comments
(a)	$(x-4)^2 + (y+2)^2 = 20$	B2	B1 $(x - 4)^2 + (y + 2)^2$ or 20

Additional Guidance	
$(x+4)^2 + (y-2)^2 = 20$	B1
$(x-4)^2 + (y+2)^2 = 4^2 + (-2)^2$	B1
$(x-4)^2 + (y+2)^2 = \sqrt{20}$	B1
$(x-4)^2 - (y+2)^2 = 20$	B1
$(x-4)^2 + (y-2)^2 = 20$	B2
$(x - 4)^{2} + (y - 2)^{2} = (\sqrt{20})^{2}$	B2
ignore further working	

(b)	(Gradient $AC =$) $\frac{02}{8 - 4}$ or $\frac{2}{4}$	M1	oe
	(Gradient of tangent =) negative reciprocal of their $\frac{2}{4}$	M1	oe ft their gradient <i>AC</i> only gradient –2 seen is M2
	or –2		
	y = -2x + 16	A1	oe

Additional Guidance		
It is possible to find an incorrect gradient of AC and then get the second M mark for finding the negative reciprocal of this	M0M1A0	

Q2.

	Answer	Mark	Comments
(a)	(1, -3)	B1	

Additional guidance	
Mark intention eg condone 1, −3	B1

(b)

Alternative method 1		
<u>−3 + √25</u> (= 2)	B1	oe eg 5 - 3 (= 2) or 2 + 3 = 5
or		
-3 + 5 (= 2)		

Alternative method 2		
$(y + 3)^2 = 25$ and $y = 2$	B1	oe
or		eg $(1 - 1)^2 + (y + 3)^2 = 25$ and y = 2
y + 3 = 5 and $y = 2$		= 2
or		
$(2 + 3)^2 = 25$		

Additional Guidance	
(1, -3) + (0, 5) = (1, 2) so $y = 2$	B0
Allow −3 + radius of 5	B1
2 = 0x + c	B0
c = 2 so y = 2	

(c)	Alternative method 1 Using equation <i>PR</i>			
	$-7 - \text{their} - 3 - \frac{4}{2}$	M1	oe grad <i>PC</i>	
	4 – their 1 or 3		their −3 and their 1 from (a)	
	$-1 \div \text{their} -\frac{4}{3} \text{ or } \frac{3}{4}$	M1	oe grad <i>PR</i>	
	5 01 4		their $-\frac{4}{3}$ must be a value (gradient <i>PR</i> =) $\frac{4}{3}$ is M2	
	$27 = \text{their } \frac{3}{4}(x - 4)$	M1dep	oe equation <i>PR</i> with $y = 2$ substituted	
			$2 = \frac{3}{4}x - 10$	
			dep on 2nd M1	
	16	A1ft	only ft their −3 and their 1 from (a)	

Alternative method 2 Using $RC^2 = CP^2 + PR^2$ or $PR^2 = QR^2$ with R (x, 2)			
$(x - \text{their 1})^2 + (2 - \text{their } - 3)^2$ = $(2 - \text{their } -3)^2 + (x - 4)^2 + (27)^2$	M1	oe eg $(x - 1)^2 = (x - 4)^2 + (27)^2$ their -3 and their 1 from (a)	
$x^{2} - 2x + 1 + 25$ = 25 + x^{2} - 8x + 16 + 81	M1dep	oe brackets expanded	
96 = 6 <i>x</i> or 96 ÷ 6	M1dep	oe linear equation or calculation dep on M2	
16	A1ft	only ft their −3 and their 1 from (a)	

Alternative method 3 Using equation CR			
-7-2	M1	oe grad PQ	
4 – their 1 or -3		their 1 from (a)	
-1 ÷ their −3 or 3	M1	oe grad <i>CR</i>	
$-1 \div \text{their} -3$ or 3		their −3 must be a value	
		(gradient CR =) $\frac{1}{3}$ is M2	
2 – their –3 = their $\frac{1}{3}(x - \text{their 1})$	M1dep	oe equation CR with $y = 2$ substituted	
		eg $2 = \frac{1}{3}x - \frac{10}{3}$	
		dep on 2nd M1	
16	A1ft	only ft their −3 and their 1 from (a)	

Alternative method 4 <i>P</i> Q	Using	equatio	n MR where M is the midpoint of
-7-2		M1	oe grad <i>P</i> Q
4 – their 1 or -3			their 1 from (a)
1		M1	oe grad <i>MR</i>
-1 ÷ their -3 or 3			their −3 must be a value
			(gradient MR =) $\frac{1}{3}$ is M2

$\left(\frac{4 + \text{their 1}}{2}, \frac{-7+2}{2}\right) \text{ or}$ (2.5, -2.5) and 2 - their -2.5 = their $\frac{1}{3}(x - their 2.5)$	M1dep	oe midpoint of <i>PQ</i> and equation MR with $y = 2$ substituted eg $2 = \frac{1}{3}x - \frac{10}{3}$ dep on 2nd M1
16	A1ft	only ft their −3 and their 1 from (a)

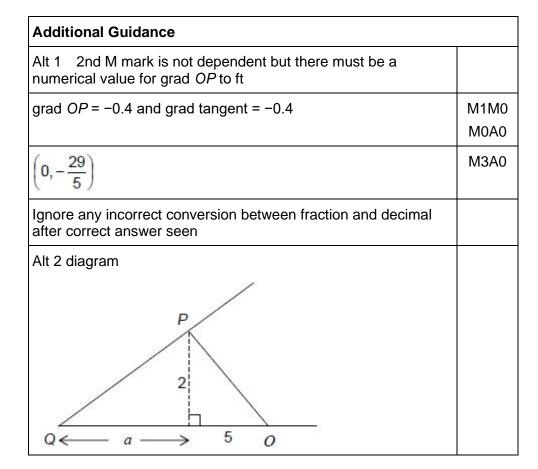
Alternative method 5 Using equation MC where M is the midpoint of PQ $\left(\frac{4 + \text{their 1}}{2}, \frac{-7 + 2}{2}\right)$ oe midpoint of PQ M1 or their 1 from (a) (2.5, -2.5) their - 3 - their - 2.5 1 M1dep oe grad MC or 3 their 1-their 2.5 2 – their –3 = their $\frac{1}{3}(x - x)$ M1dep oe equation MC with y = 2substituted their 1) $2 = \frac{1}{3}x - \frac{10}{3}$ or eg 2 – their –2.5 = their $\frac{1}{3}(x - x)$ dep on M2 their 2.5) 16 A1ft only ft their -3 and their 1 from (a)

Alternative method 6 Using trigonometry where M is the midpoint of PQ				
$(QM =) \frac{1}{2} \sqrt{(4 - \text{their 1})^2 + (-7 - 2)^2}$	M1			
or $\frac{1}{2}\sqrt{90}$ or 4.74				
$\sin^{-1}\left(\frac{\text{their 4.74}}{5}\right)$	M1dep	oe		
sin ⁻¹ (5)		angle QCM		
or (angle Q <i>CM</i> =) 71.5 or 71.6				
$\tan (\text{their } 71.5) = \frac{x - \text{their } 1}{5}$	M1dep	using triangle QCR		
16	A1ft	only ft their 1 from (a)		

Additional Guidance		
Allow (16, …) to imply answer 16		
Alt 1 $-\frac{4}{3}x$ is M0 unless recovered		
(a) (1, −2)		
grad $PC = -\frac{5}{3}$ grad $PR = \frac{3}{5}$	M1, M1	
Answer 19 (3rd M1 can be implied by A1ft answer)	M1, A1ft	

Q3.

	Answer	Mark	Comments
(a)	$(-5)^2 + 2^2 = 29$	B1	oe involving use of −5 and 2
			eg $(-5-0)^2 + (2-0)^2 = 29$
			or $(05)^2 + (0 - 2)^2 = 29$
			or $\sqrt{(-5)^2 + 2^2} = \sqrt{29}$
			or $29 - (-5)^2 = 2^2$
			or $29 - 2^2 = (-5)^2$
			or $\sqrt{29 - (-5)^2} = 2$
			or $\sqrt{29-2^2} = -5$


Additional Guidance	
25 + 4 = 29	B0
$-5^2 + 2^2 = 29$	B0
Allow 29 to be written as $\sqrt{29}^2$	

(b)	Alternative method 1 Using gradients		
	(gradient OP=)	M1	oe
	$\frac{2-0}{-5-0}$ or $-\frac{2}{5}$ or -0.4		may be implied eg $y = -\frac{2}{5}x$ or

		gradient of tangent = $\frac{5}{2}$ (with gradient <i>OP</i> not seen)
(gradient tangent =)	M1	oe
$\frac{-1}{\text{their} -\frac{2}{5}} \text{or} \frac{5}{2} \text{ or } 2.5$		correct or ft their $-\frac{2}{5}$
5	M1dep	oe
$y - 2 = $ their $\frac{5}{2}(x5)$		dep on 2nd M1
or 5		equation of their tangent with or without substitution of $y = 0$
$0 - 2 = $ their $\frac{5}{2}(x5)$		implied by $y = \frac{5}{2}x + \frac{29}{2}$ oe
or		implied by $y = 2x + 2$ oe
$2 = \text{their} \frac{5}{2} \times -5 + c$		or $0 = \frac{5}{2}x + \frac{29}{2}$ oe
_ 29	A1	ое
- <u>29</u> 5 or -5.8		allow $\left(-\frac{29}{5}, 0\right)$
		SC2 answer -10 (grad tangent = $\frac{2}{5}$
		SC2 answer $-\frac{21}{5}$ or -4.2 oe
		$(\text{grad tangent} = -\frac{5}{2})$

Alternative method 2Using similar triangles (see diagram in Additional
Guidance) $\frac{a}{2} = \frac{2}{5}$ M1oe equation
any letter $a = \frac{2}{5} \times 2$ or $a = \frac{4}{5}$ M1dep $-5 - \text{their} \frac{4}{5}$ M1dep $-\frac{29}{5}$ or -5.8A1

allow $\left(-\frac{29}{5}, 0\right)$
SC2 answer -10 (grad tangent = $\frac{2}{5}$)
SC2 answer $-\frac{21}{5}$) or -4.2 oe
$(\text{grad tangent} = -\frac{5}{2})$

Q4.

	Answer	Mark	Comments
(a)	Radius of circle = 4	M1	4 could be seen in the solution or diagram without the word radius stated
	Use of 4cos 60 and 4sin 60 and	A1	= $(2, 2\sqrt{3})$ candidates could use the sine rule but it should look like this anyway

$4 \times \frac{1}{2}$ and $4 \times \frac{\sqrt{3}}{2}$			
--	--	--	--

Alternative method 2		
1 : $\sqrt{3}$: 2 triangle seen or stated	M1	Pythagorean triple
2:2√3:4	A1	

Alternative method 3			
$\tan 60 = \frac{\text{opp}}{\text{adj}} = \frac{2\sqrt{3}}{2} = \sqrt{3}$	B1	shows that the point is on the line <i>OP</i>	
or $\frac{\text{opp}}{\text{adj}} = \frac{2\sqrt{3}}{2} = \sqrt{3} = \tan 60$			
$(2\sqrt{3})^2 + 2^2 = 12 + 4 = 16$	B1	shows that the point lies on the circle	

Additional Guidance		
Candidates could find one coordinate and then substitute into the circle equation to show the second coordinate	M1A1	
Candidates may try to use multiple alt methods – mark according to the method that gives them the best mark		
It is possible to show that the x coordinate is 2 by connecting P and (4,0) hence creating an equilateral triangle (this would need to be stated). Then drop a perpendicular from P which bisects the base line showing that the x coordinate is 2		

		r
(Gradient of $OP =$) $\frac{2\sqrt{3}}{2}$ or = $\sqrt{3}$	M1	$\sqrt{3}$ either from part (a) or knowing that an angle of 60° gives it
(Gradient of tangent =) -1 their $\sqrt{3}$	M1	oe $\frac{-1}{\sqrt{3}}$ would imply the first M mark
$y - 2\sqrt{3} = \frac{-1}{\sqrt{3}} (x - 2)$ or $2\sqrt{3} = \frac{-1}{\sqrt{3}} (2) + c$	M1dep	oe dependent on M2 already being awarded $c = \frac{8\sqrt{3}}{3}$
$x + \sqrt{3} y = 8$	A1	