4 CALCULUS - Further Maths

Section 4.1 - 4.3

Q1. $y=\frac{2 x^{2}\left(3 x^{3}-7 x\right)}{x}$
Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(4 marks)

Q2. $y=x^{5}+x$
Work out the positive value of x at which the rate of change of y with respect to x is 81 (3 marks)

Q3.
$y=\frac{x^{6}}{2}+\frac{x^{4}}{4}$
Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Simplify your answer.
(2 marks)

Q4. $y=2 x^{10}-\frac{3}{x^{2}} \quad$ Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$

Q5. $y=x\left(2 x^{4}-7 x^{3}\right)$
Work out an expression for the rate of change of y with respect to x.

Q6. $y=(5 x-3)^{2} \quad$ Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Give your answer in the form $a(b x-c)$ where a, b and c are integers >1

Q7. Work out the gradient of the curve
You must show your working.

Q8. A curve has equation $y=a x^{2}+3 x$ where a is a constant.
When $x=-1$, the gradient of the curve is $-5 \quad$ Work out the value of a. (3 marks)

Q9. $y=2 x^{4}\left(x^{3}+2-\frac{3}{x}\right) \quad$ Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(3 marks)

Q10. $y=2 x^{3}+a x$, where a is a constant.
The value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=2$ is twice the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=-1$

Q11. For the curve $y=f(x), \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{2} x-k x^{4}+k \quad$ where k is a constant.
When $x=-2$ the gradient of the curve is $12 \quad$ Work out the value of k.
(3 marks)

Q12. $y=\frac{2 x^{7}+15 x^{2}}{3 x} \quad$ Work out the value of x when $\frac{\mathrm{d} y}{\mathrm{~d} x}=133$
(4 marks)

Q13. A curve has the equation $y=x^{3}+a x^{2}-7$ where a is a constant.
The gradient of the curve when $x=4$ is twice the gradient of the curve when $x=-1$
Work out the value of a.
(5 marks)

Q14. A curve has equation $y=x^{3}-5 x^{2}$
At two points on the curve, the rate of change of y with respect to x is 4
(a) Work out an equation, in terms of x, to represent this information.

Give your answer in the form $\quad a x^{2}+b x+c=0 \quad$ where a, b and c are integers.(2 marks)
(b) Hence, work out the two possible values of x.

Give your answers to 3 significant figures.
(2 marks)

Section 4.4

Q1. A curve has equation $y=x^{4}-5 x^{2}+9$
(a) Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b) Work out the equation of the tangent to the curve at the point where $x=2$ Give your answer in the form $y=m x+c$

Q2. A curve has equation $y=14 x+\frac{3}{2 x^{2}}$
Work out the equation of the normal to the curve at the point $\left(\frac{1}{2}, 13\right)$
Give your answer in the form $\quad a x+b y+c=0 \quad$ where a, b and c are integers. (5 marks)

Q3. Work out the equation of the normal to the curve $y=x^{2}+4 x+5$ at the point where $x=-3$

Q4. P is the point on the curve $y=a x^{3}+10 x^{2}$ where $x=2$
The gradient of the normal to the curve at P is $-\frac{1}{4} \quad$ Work out the value of a. (4 marks)

Q5.

(a) Expand $x^{2}(x-2)$
(b) A curve has equation $y=x^{2}(x-2)$

Work out the gradient of the curve at the point $(3,9)$.
(c) Line L is the tangent to the curve $y=x^{2}(x-2)$ at the point $(3,9)$.

Work out the equation of L. Give your answer in the form $y=m x+c$

Q6. A curve has equation $y=2 x^{2}+3 x-9$
At a point P on the curve, the tangent is parallel to the line $y=4-5 x$
Work out the coordinates of P.

Q7. P is a point on a curve. The curve has gradient function $\frac{x^{5}-17}{10}$
The tangent to the curve at P is parallel to the line $3 x-2 y=9$ Work out the x-coordinate of P.

Q8. Point A lies on the curve $y=x^{2}+5 x+8$
The x-coordinate of A is -4
(a) Show that the equation of the normal to the curve at A is $3 y=x+16$
(b) The normal at A also intersects the curve at B.

Work out the x-coordinate of B.

Section 4.5

Q1. For what values of x is $y=150 x-2 x^{3}$ an increasing function?

Q2. Work out the values of x for which
$\mathrm{f}(x)=\frac{2}{3} x^{3}+\frac{7}{2} x^{2}$ is a decreasing function.

Give your answer as an inequality.

Q3. $\mathrm{f}(x)=2 x^{3}-12 x^{2}+25 x-11$
Use differentiation to show that $\mathrm{f}(x)$ is an increasing function for all values of x.

Q4. This is a sketch of the curve

$$
y=\mathrm{f}(x)
$$

(a) For this curve $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-4 x-4$

Work out the range of values of x for which $\mathrm{f}(x)$ is a decreasing function.
Write your answer as an inequality.
(b) Work out the equation of the normal to the curve at the point $(1,-2)$

Give your answer in the form $y=m x+c$

Section 4.6

Q1. $y=3 x^{4}-\frac{6}{x}$
Work out the value of $\frac{\mathrm{d}^{2} y}{\mathrm{dx}}$. when $x=-2$

Q2. $y=\frac{6 x^{9}+x^{8}}{2 x^{4}}$
Work out the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=0.5$

Section 4.7-4.8

Q1. The curve $y=x^{4}-18 x^{2}$ has three stationary points.

Work out the coordinates of the three stationary points and determine their nature. (6 marks)
Q2. $\begin{aligned} & y=12 x+\frac{3}{x} \quad \text { Show that } y \text { has a minimum value when } x=0.5\end{aligned}$

Q3. $y=2 x^{3}-12 x^{2}+24 x-11$
(a) Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$

Give your answer in the form $\frac{\mathrm{d} y}{\mathrm{~d} x}=a(x-b)^{2}$, where a and b are integers.
(3 marks)
(b) Hence, or otherwise, work out the coordinates of the stationary point of $y=2 x^{3}-12 x^{2}+24 x-11$

Q4. The curve $y=\mathrm{f}(x)$ has $\frac{\mathrm{d} y}{\mathrm{~d} x}=k x(x-3)^{3} \quad$ where k is a negative constant.
There is a stationary point at $x=3$. Determine the nature of this stationary point. You must show your working.

Q5. Show that the curve $y=\frac{3}{5} x^{5}+x^{4}$ has exactly two stationary points.

Q6. This shape is made from two rectangles. All dimensions are in centimetres.

(a) The perimeter of the shape is 252 cm

Show that $y=126-45 x$
(b) The area of the shape is $A \mathrm{~cm}^{2}$

Show that $A=2520 x-450 x^{2}$
(c) Use differentiation to work out the maximum value of A as x varies.

Section 4.9

Q1. Here are five graphs.

For each of the following statements, decide which graph is being described. Circle your answer each time.
(a) The rate of change of y with respect to x is always negative.
$A \quad B$
C
D
E
(b) The rate of change of y with respect to x is always zero. $A \quad B \quad C \quad D \quad E$
(c) As x increases, the rate of change of y with respect to x decreases.
$\begin{array}{lllll}A & B & C & D & E\end{array}$

Q2. $y=\mathrm{f}(x)$ is a cubic curve with a maximum and a minimum stationary point.

$$
\frac{d y}{d x}=x^{2}+2 x-3
$$

The y-coordinate of the minimum point is $2 \frac{1}{3}$
The y-coordinate of the maximum point is 13
$(0,4)$ is a point on the curve.
The tangent at $(0,4)$ has a negative gradient.
Sketch the curve on the grid below. Show the coordinates of the stationary points.

Q3.
On the grid, sketch a graph for which
the rate of change of y with respect to x is always a positive constant.

Q4.
On the grid, sketch a graph for which
the rate of change of y with respect to x is always zero.

