4 CALCULUS – Further Maths

Section 4.1 – 4.3

$2x^2$	$x^{2}(3x^{3}-7x)$	dy	
Q1.	x	Work out dx	(4 marks)

Q2. $y = x^5 + x$

Work out the positive value of x at which the rate of change of y with respect to x is 81 (3 marks)

Q3. $y = \frac{x^6}{2} + \frac{x^4}{4}$	Work out $\frac{dy}{dx}$	Simplify your answer.	(2 marks)
Q4. $y = 2x^{10} - \frac{3}{x^2}$	Work out $\frac{dy}{dx}$		(3 marks)

Q5. $y = x(2x^4 - 7x^3)$	
Work out an expression for the rate of change of y with respect to x .	(3 marks)

dy Work out dx **Q6.** $y = (5x - 3)^2$ Give your answer in the form a(bx - c) where a, b and c are integers > 1 (4 marks)

 $y = \frac{12x^3 - 8x + 3}{4x^2}$ at the point where x = -1**Q7.** Work out the gradient of the curve You must show your working. (5 marks)

Q8. A curve has equation $y = ax^2 + 3x$ where *a* is a constant.

When x = -1, the gradient of the curve is -5 Work out the value of *a*. (3 marks)

Q9.
$$y = 2x^4 \left(x^3 + 2 - \frac{3}{x}\right)$$
 Work out $\frac{dy}{dx}$ (3 marks)

Q10.
$$y = 2x^3 + ax$$
, where *a* is a constant.
The value of $\frac{dy}{dx}$ when $x = 2$ is twice the value of $\frac{dy}{dx}$ when $x = -1$

Work out the value of *a*.

(5 marks)

(3 marks)

Q11. For the curve
$$y = f(x)$$
, $\frac{dy}{dx} = \frac{3}{2}x - kx^4 + k$ where k is a constant.

When x = -2 the gradient of the curve is 12

Q12.
$$y = \frac{2x^7 + 15x^2}{3x}$$
 Work out the value of x when $\frac{dy}{dx} = 133$ (4 marks)

Work out the value of *k*.

Q13. A curve has the equation $y = x^3 + ax^2 - 7$ where *a* is a constant. The gradient of the curve when x = 4 is **twice** the gradient of the curve when x = -1Work out the value of *a*. (5 marks)

Q14. A curve has equation $y = x^3 - 5x^2$

At two points on the curve, the rate of change of y with respect to x is 4

- (a) Work out an equation, in terms of x, to represent this information. Give your answer in the form $ax^2 + bx + c = 0$ where a, b and c are integers.(2 marks)
- (b) Hence, work out the two possible values of *x*.Give your answers to 3 significant figures. (2 marks)

Section 4.4

Q1. A curve has equation $y = x^4 - 5x^2 + 9$

(a) Work out
$$\frac{dy}{dx}$$
 (2 marks)

(b) Work out the equation of the tangent to the curve at the point where x = 2Give your answer in the form y = mx + c (4 marks)

$$y = 14x + \frac{3}{2x^2}$$

Q2. A curve has equation

$$2x^2$$

Work out the equation of the normal to the curve at the point
$$\left(\frac{1}{2}, 13\right)$$

Give your answer in the form ax + by + c = 0 where *a*, *b* and *c* are integers. (5 marks)

Q3. Work out the equation of the normal to the curve $y = x^2 + 4x + 5$ at the point where x = -3

(5 marks)

Q4. <i>P</i> is the point on the curve $y = ax^3 + 10x^2$ where $x = 2$			
The gradient of the normal to the curve at <i>P</i> is $-\frac{1}{4}$ Work out the value of <i>a</i> . (4 marks)			
Q5. (a) Expand $x^2(x-2)$	(2 marks)		
(a) Expand $x(x, Z)$	(2 11101 K3)		
(b) A curve has equation $y = x^2(x - 2)$ Work out the gradient of the curve at the point (3, 9).	(3 marks)		
(c) Line <i>L</i> is the tangent to the curve $y = x^2(x - 2)$ at the point (3, 9). Work out the equation of <i>L</i> . Give your answer in the form $y = mx + c$ (4)			
Q6. A curve has equation $y = 2x^2 + 3x - 9$ At a point <i>P</i> on the curve, the tangent is parallel to the line $y = 4 - 5x$			
Work out the coordinates of <i>P</i> .	(4 marks)		
Q7. <i>P</i> is a point on a curve. The curve has gradient function $\frac{x^5 - 17}{10}$			
The tangent to the curve at <i>P</i> is parallel to the line $3x - 2y = 9$ Work out the <i>x</i> -coordinate of <i>P</i> .			
Q8. Point <i>A</i> lies on the curve $y = x^2 + 5x + 8$			
The x-coordinate of A is -4			
(a) Show that the equation of the normal to the curve at A is $3y = x + 16$	(5 marks)		
(b) The normal at <i>A</i> also intersects the curve at <i>B</i> . Work out the <i>x</i> -coordinate of <i>B</i> .	(4 marks)		

Section 4.5

- **Q1.** For what values of x is $y = 150x 2x^3$ an increasing function? (4 marks)
- **Q2.** Work out the values of x for which $f(x) = \frac{2}{3}x^3 + \frac{7}{2}x^2$ is a decreasing function.

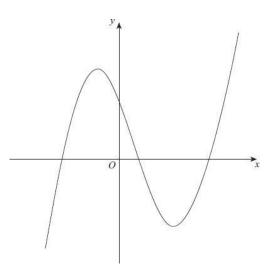
Give your answer as an inequality.

(5 marks)

Q3. $f(x) = 2x^3 - 12x^2 + 25x - 11$

Use differentiation to show that f(x) is an increasing function for all values of x. (4 marks)

Q4. This is a sketch of the curve y = f(x)



		dy
(a)	For this curve	$\overline{\mathrm{d}x} = 3x^2 - 4x - 4$

Work out the range of values of x for which f(x) is a decreasing function.Write your answer as an inequality.(4 marks)

(b) Work out the equation of the normal to the curve at the point (1, -2)Give your answer in the form y = mx + c (5 marks)

Section 4.6

Q1. $y = 3x^4 - \frac{6}{x}$ Work out the value of $\frac{d^2y}{dx^2}$ when x = -2 (4 marks)

Q2.
$$y = \frac{6x^9 + x^8}{2x^4}$$
 Work out the value of $\frac{d^2y}{dx^2}$ when $x = 0.5$ (5 marks)

Section 4.7 - 4.8

Q1. The curve $y = x^4 - 18x^2$ has three stationary points.

Q2.
$$y = 12x + \frac{3}{x}$$
 Show that y has a minimum value when $x = 0.5$ (5 marks)

Q3.
$$y = 2x^3 - 12x^2 + 24x - 11$$

dy d

(a) Work out dx

Give your answer in the form $\frac{dy}{dx} = a(x - b)^2$, where *a* and *b* are integers. (3 marks)

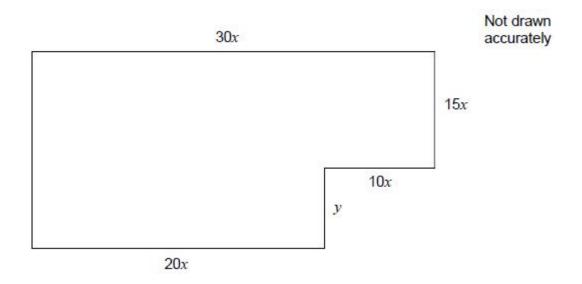
(b) Hence, or otherwise, work out the coordinates of the stationary point of $y = 2x^3 - 12x^2 + 24x - 11$ (2 marks)

Q4. The curve y = f(x) has $\frac{dy}{dx} = kx(x-3)^3$ where k is a **negative** constant.

There is a stationary point at x = 3. Determine the nature of this stationary point. You **must** show your working. (3 marks)

Q5. Show that the curve $y = \frac{3}{5}x^5 + x^4$ has **exactly two** stationary points. (4 marks)

Q6. This shape is made from two rectangles. All dimensions are in centimetres.



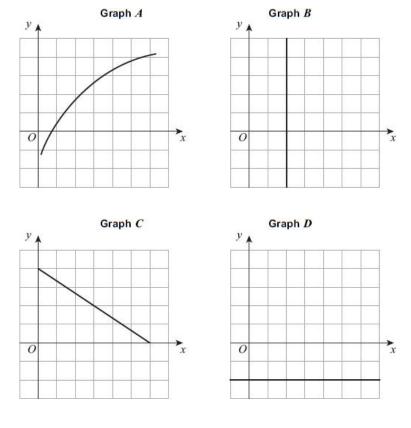
- (a) The perimeter of the shape is 252 cm Show that y = 126 - 45x (2 marks)
- (b) The area of the shape is $A \text{ cm}^2$ Show that $A = 2520x - 450x^2$

(2 marks)

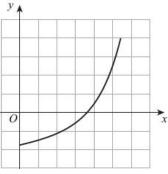
(c) Use differentiation to work out the maximum value of A as x varies.

Section 4.9

Q1. Here are five graphs.



Graph E



For each of the following statements, decide which graph is being described. Circle your answer each time.

(a) The rate of change of y with respect to x is always negative. A B C D E (1 mark)
(b) The rate of change of y with respect to x is always zero. A B C D E (1 mark) (c) As x increases, the rate of change of y with respect to x decreases. $A \quad B \quad C \quad D \quad E$ (1 mark)

Q2. y = f(x) is a cubic curve with a maximum and a minimum stationary point.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + 2x - 3$$

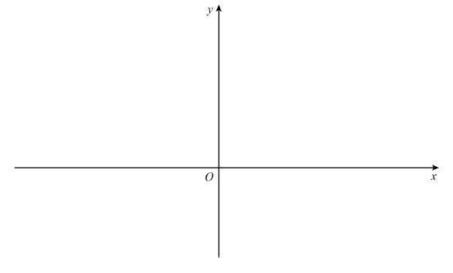
The y-coordinate of the minimum point is $2\frac{1}{3}$

The y-coordinate of the maximum point is 13

(0, 4) is a point on the curve.

The tangent at (0, 4) has a negative gradient.

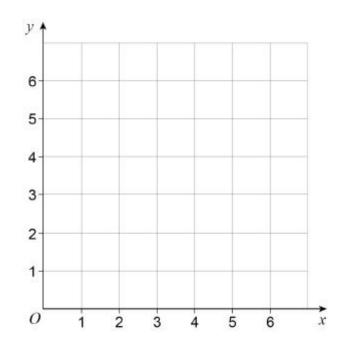
Sketch the curve on the grid below. Show the coordinates of the stationary points.



(4 marks)

Q3.

On the grid, sketch a graph for which the rate of change of y with respect to x is always a positive constant.



(1 mark)

Q4.

On the grid, sketch a graph for which

the rate of change of y with respect to x is always zero.

