2 ALGEBRA – Further Maths

Section 2.1 - 2.5

Q1	f(x)	$= 2x^2 + 7$	for all values of <i>x</i> .			
	(a)	What is the value	of f(—1)?			(1 mark)
	(b)	What is the range	of f(<i>x</i>)?			(1 mark)
Q2	. The	e function g is giver	by $g(x) = x^2 - 4$	with domain	-1 < <i>x</i> < 3	
	Work	cout the range of th	e function.			(2 marks)
Q3	. f(x)	$= 10 - x^2$ for all v	alues of <i>x</i> .	g(x) =	= (x + 2a)(x + 3)	for all values of <i>x</i> .
(a) Circle the correct value of $f(-4)$						
	2	26	-6	36	196	(1 mark)
	(b)	Write down the rar	nge of $f(x)$.			(1 mark)
	(C)	g(0) = 24				
		Show that $a = 4$				(1 mark)
	(d)	Hence solve $f(x) =$	g(x)			(4 marks)
Q4	. The	e graph of $y = f(x)$ is	s a straight line.			
		The domain of f(x)) is $1 \le x \le 5$			
		The range of $f(x)$ is	$s 3 \le f(x) \le 11$			
	Work	c out one possible e	expression for $f(x)$.			(4 marks)
Q5	. h(<i>x</i>) = 5x - 3	The range of h(<i>x</i>) is	-2 < h(x) < 1		
	Work	cout the domain of	h(<i>x</i>).			(2 marks)
Q6	f(x). The o	$= x^4$ domain of f(x) is $x \ge$	2			
	Work	c out the range of f(.	x).			(1 mark)

Q7. The function f is given by $f(x) = \sqrt{2x-5}$

(a) Which of these inequalities is a possible domain for f(x)? Circle the inequality.

$$x \ge 0 \qquad x \ge \frac{2}{5} \qquad x \ge 2 \qquad x \ge \frac{5}{2}$$
(1 mark)
(b) Work out x when $f(x) = 1.2$
(2 marks)
(c) Work out the value of $\frac{f(2\frac{5}{8})}{g(x)}$
Give your answer as a fraction in its simplest form.
(3 marks)
Q8. $f(x) = x^2 - 7$ for all values of x
 $g(x) = 1 - 3x$ for $-4 \le x \le 4$
(a) Work out the range of $f(x)$. Give your answer as an inequality. (1 mark)
(b) Work out the range of $g(x)$. Give your answer as an inequality. (2 marks)
(c) Solve $2f(x) = g(x)$ You must show your working.
Give your answers to 3 decimal places.
(4 marks)

Q9.
$$g(x) = 5 - x^2$$
 The domain of $g(x)$ is $-2 \le x \le 1$

Work out the range of g(x).

Q10. f(x) is a function with domain all values of x. $f(x) = \sqrt{x^2 + 6x - a}$ where a is a constant.

Work out the possible values of *a*. Give your answer as an inequality. (4 marks)

Q11.
$$f(x) = \left(\frac{9x}{2}\right)^{-1} \qquad g(x) = \sqrt{1 - px^3} \quad \text{where } p \text{ is a constant.}$$

Given that
$$f\left(\frac{1}{3}\right) = g\left(\frac{1}{3}\right)$$
 work out the value of p . (5 marks)

Q12. $f(x) = x^3 - 2$

The domain of f(x) is $x \le 3$ Work out the range of f(x). (2 marks)

(2 marks)

Q13.	$f(x) = 3x^2 + 6$ for all x		$g(x) = \sqrt{x}$	$\overline{5}$ $x \ge 5$		
(a)	Work out the value of gf(4)					(2 marks)
(b)	Show that $fg(x)$ can be writh	en in the f	form $a(x -$	a) whe	re <i>a</i> is a	n integer.
						(2 marks)
Q14.	$h(x) = x^2 + 5$					
k is a fund	tion such that $hk(x) = 4x^2 + 5$	Work o	ut an expres	ssion for	kh(x)	(2 marks)
Q15.	h(x) = 5x(x - 4)	Solve	3h(x) = h(x)	2 <i>x</i>)		(4 marks)
Q16.	$f(x) = \frac{x-3}{6x-5}$ Which	h value of	x can not t	be in the d	lomain d	of $f(x)$?
Circ	0 le your answer.	$\frac{5}{6}$	<u>6</u> 5		3	(1 mark)
Q17.	$g(x) = \frac{6}{x} \qquad h(x) = x - 5$		Solve gh(x)	= <i>x</i>		(4 marks)
Q18.	$f(x) = (x + 4)^3$	Work o	ut f ⁻¹(–8)			(2 marks)
Q19.	$f(x) = (x + 2)^3$ g is a	function s	such that	gf(x) = (x	+ 2) ¹²	
Wor	k out an expression for $g(x)$					(1 mark)
Q20.	The function h is given by	$h(x) = \frac{3}{2}$	$\frac{+x}{2}$	Work	out h ⁻¹ (x	:) (2 marks)

Section 2.6

Q1.	$(3x + a)(5x - 4) \equiv 15x^2 - 6x^2 - 6$	- 2 <i>x</i> + <i>b</i>	Work out the values of a and b .	(3 marks)
Q2.	Expand and simplify	(3w + 2y)(w	(y - 4y)	(3 marks)
Q3.	Expand and simplify	(y ² – 5y + 2)	(2 <i>y</i> – 3)	(3 marks)

Q4. Expand and simplify
$$\frac{3}{x^2} \left(\frac{x}{3} + 3x^2 - 1\right)$$
(3 marks)Q5. $2x^2 - 2bx + 7a \equiv 2(x-a)^2 + 3$
Work out the two possible pairs of values of a and b.(6 marks)Q6. $x^2 + 2ax + b \equiv (x-5)^2 - a$
Work out the values of a and b.(3 marks)Q7. $3x^3 - 2x^2 - 147x + 98 \equiv (ax - c)(bx + d)(bx - d)$
where a, b, c and d are positive integers. Work out the values of a, b, c and d.(3 marks)Q8. $(x + 4)(x^2 - kx - 5)$ is expanded and simplified.
The coefficient of the x^2 term is twice the coefficient of the x term. Work out the value of k.
(3 marks)Q9. The x^2 term in the expansion of $(3x + 4)(x^2 + px + 5)$ is $-23x^2$
Work out the value of p.(3 marks)Q10.Expand and simplify fully $(x + 2)(x + 3)(x + 4)$ (3 marks)Q11. $A = 2 - 5x$
 $B = 3x - 1$
 $C = x^2$
Show that $(2A + 3B)^2 \equiv A + B + C$
 $(4 marks)$ Q12. $p(x - 1) + 2(3x + k) \equiv 4(x + 2)$
where p and k are integers.

Q13. Simplify $(n + 2)^3 - n^2(n - 5)$

Give your answer in the form $an^2 + bn + c$ where a, b and c are integers. (4 marks)

Q14. Show that $(x + 1)(x + 3)(x + 4) - x(x^2 + 7x + 11)$ can be written in the form (x + a)(x + b) where *a* and *b* are positive integers. (5 marks)

Q15. $3x^2 + 2bx + 8a$ can be written in the form $3(x + a)^2 + b + 2$

Work out the **two** possible pairs of values of a and b. (6 marks)

Q16. Expand and simplify fully $(5x + 3y^2)(4x - y^2)$	(3 marks)
Q17. Expand and simplify fully $(3x + 4)(2x - 3)(5x - 2)$	(3 marks)
Section 2.7	
Q1. Expand and simplify fully $(3 + 2x)^5$	(4 marks)
Q2. The coefficient of x^4 in the expansion of $(a + 2x)^6$ is 1500 Work out the two possible values of <i>a</i> .	(3 marks)
Q3. The coefficient of the x^4 term in the expansion of $(2x + a)^6$ is 60. Work out the possible values of <i>a</i> .	(4 marks)
Q4. The coefficient of x^2 in the expansion of $(3 + ax)^4$ is 150 Work out the two possible values of <i>a</i> .	(3 marks)
Section 2.8	
Q1. Factorise fully $(x + y)^2 + (x + y)(2x + 5y)$	(3 marks)
Q2. (a) Factorise fully $5m^2 - 20p^2$	(3 marks)
(b) You are given that $p = 15$ and $5m^2 - 20p^2 = 0$ Using your answer to part (a), or otherwise, work out the values of m	. (2 marks)
Q3. Factorise fully $12c^2d - 9d^2$	(2 marks)
Q4.	
(a) Show that $(x + 7)^2 - (x - 3)^2$ simplifies to $20(x + 2)$	(3 marks)
(b) Hence, or otherwise, work out $107^2 - 97^2$	(2 marks)
Q5. Factorise fully $(w + 4)^3 - (w + 4)^2(w + 1)$	(3 marks)
Q6. Factorise fully $3x^2 - 12$	(2 marks)

Q7.	Factorise $5x^2$ +	$4xy - 12y^2$	(3 marks)
Q8.	Factorise fully Do not attempt t	$(x + 6)^4 + (x + 6)^3(3x + 4)$ o expand the brackets.	(3 marks)
Q9.	Factorise fully	$48 - 75x^2$	(2 marks)
Q10	 Factorise fully Give your answe Do not attempt t 	$6(y + 3)^5 + 4(y + 3)^4$ er in its simplest form. o expand $(y + 3)^5$ or $(y + 3)^4$	(3 marks)
Q11	. Factorise fully	$12pq^3r - 18pq^2r^2 + 24pq^2r$	(2 marks)
Q12	. Factorise fully	$6x^2 + 26xy - 20y^2$	(3 marks)
Q13	. Factorise fully	$x^4y + 3x^2y^3$	(2 marks)
Q14	 Factorise fully 	$x^{6} - 9x^{4}$	(2 marks)
Q15	Factorise fully	$x^4 - 81$	(2 marks)

Section 2.9

	5x 3	
Q1. Simplify fully	(x+4)(x-6) $(x-6)$	(4 marks)

	$x^2 + 4x - 12$	x+6	
Q2. Simplify	$x^2 - 25$	$x^2 - 5x$	(5 marks)

		$4x^2 + 19x - 5$		<i>x</i> + 5		
Q3.	Simplify fully	$9x^2 - 16$	÷	3x-4	(5	marks)

		4 2		6x-4	
Q4. (a)	Show that	$x^{+}x - 1$	simplifies to	x(x - 1)	(2 marks)

(b) Hence, or otherwise, solve	$\frac{4}{x} + \frac{2}{x-1} = 3$	
Give your solutions to 3 signifi	icant figures.	(5 marks)

Q5. Solve
$$\frac{4}{x-2} + \frac{1}{x+3} = 5$$
 (7 marks)
Q6. Simplify fully
$$\frac{8c^7}{15d^6} \div \frac{6c^2}{5d^3}$$
 (3 marks)
Q7. (a) Show that
$$\frac{c^2 + 5c + 4}{3c + 3}$$
 simplifies to
$$\frac{c + 4}{3c + 3}$$
 (2 marks)
(b) Hence, or otherwise, simplify fully
$$\frac{c^2 + 5c + 4}{3c + 3} + \frac{3 - 2c}{6}$$
 (3 marks)
Q8. Write as a single fraction
$$\frac{5}{m+1} + \frac{6}{m-4}$$
 (4 marks)
Q9. By factorising fully, simplify
$$\frac{x^4 - x^3 - 2x^2}{x^4 - 5x^2 + 4}$$
 (5 marks)
Q10. Solve
$$\frac{3}{x-2} + \frac{2}{x-1} = 5$$
 Write your solutions to 3 significant figures. (6 marks)
Q11. Simplify fully
$$\frac{(x}{2} + \frac{3x}{5}) \div \sqrt{\frac{x^6}{4}}$$
 (5 marks)
Q12. Simplify fully
$$\frac{8a}{3a+6} \times \frac{5a+10}{3a^2} \div \frac{4}{15a^3}$$
 (3 marks)
Q13. Simplify fully
$$\frac{x}{x-3} + \frac{6}{(x-3)(x-5)}$$
 (4 marks)
Q14. Write
$$\frac{7}{9x} + \frac{2}{3x^2}$$
 as a single fraction in its simplest form. (3 marks)
Q15.
Show that
$$\frac{x^4}{x+4} \times \frac{x+2}{x} + \frac{x^2}{3x+12}$$

simplifies to the form $ax^2 + bx$ where a and b are integers. (4 marks)

Q16. Simplify fully $\frac{x-x^3}{2x+2x^2}$ You must show your working.	(4 marks)
Q17. Simplify fully $\frac{15x^2y - 5xy^2}{12x - 4y}$	(3 marks)
Q18. Write $\frac{5}{6a} + \frac{a}{4}$ as a single fraction. Give your answer in its simples	t form. (2 marks)
Q19. Simplify $\frac{8x^3 - 50x}{2x(6x^2 - x - 35)}$ Give your answer in the form $\frac{ax + b}{cx + d}$ where <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> are integ	ers. (5 marks)
Q20. Work out $\frac{7}{2x^2} + \frac{4}{3x}$ Give your answer as a single fraction in its simplest form.	(2 marks)
Q21. Simplify fully $\frac{6c^4 - c^3}{36c^2 - 1}$	(3 marks)
Q22. Simplify fully $3y - 15x$	(2 marks)
Section 2.10	
Q1. Rearrange $ef = \frac{5e+4}{3}$ to make <i>e</i> the subject.	(3 marks)
Q2. Rearrange $y = \sqrt{\frac{x+2w}{3}}$ to make <i>w</i> the subject.	(3 marks)
 Q3. 5t + 3 = 4w(t + 2) (a) Rearrange the formula to make <i>t</i> the subject. 	(4 marks)

1 (b) Work out the exact value of t when $w = -\overline{8}$ Give your answer in its simplest form. (3 marks) $\mathbf{Q4.} \quad S = \frac{a}{1-r}$ Show that $r = \frac{S-a}{S}$ (a) (3 marks) Work out the value of *r* when S = 10a(b) (2 marks) 2w + 1**Q5.** Rearrange $x = \overline{5 - 3w}$ to make *w* the subject. (4 marks) $\sqrt{\frac{3xy}{x+y}} = 4$ **Q6.** Make *y* the subject of (4 marks)

Q7. Rearrange
$$y = \frac{8(w-x)}{x}$$
 to make x the subject. (4 marks)

Q8. Rearrange
$$\frac{1}{xy} = 4 - \frac{3}{y}$$
 to make *x* the subject. (3 marks)

Q9. Rearrange
$$t = \frac{3w^3 + a}{w^3 - 2}$$
 to make *w* the subject. (5 marks)

Q10. Rearrange
$$m = \frac{2p+1}{p} + \frac{p+5}{3p}$$
 to make p the subject. (4 marks)

Section 2.11

Q1. $f(x) = 2x^3 + 11x^2 + 12x - 9$

(a)	Use the fac	tor theorer	n to show that	(2x - 1)	is a factor of $f(x)$.	(2 marks)
(b)	Show that	f(x) = 0	has exactly ty	vo solutior	IS.	(4 marks)

Q2.

(a) Use the factor theorem to show that (x - 1) and (x - 4) are factors of $x^3 - 21x + 20$ (2 marks) (b) Show that (x - 1) and (x - 4) are also factors of $x^3 - 10x^2 + 29x - 20$ (2 marks)

(c) Hence, simplify fully
$$\frac{x^3 - 21x + 20}{x^3 - 10x^2 + 29x - 20}$$
 (3 marks)

Q3. $f(x) = x^3 + ax^2 + bx + 24$ for all values of *x*.

Two of the factors of f(x) are (x - 2) and (x + 3). Work out the values of a and b. (5 marks)

Q4. (x - a) is a factor of $2x^3 - 7ax + 3a$ Work out the **largest** possible value of *a*. (4 marks)

Q5. (x - a) is a factor of $x^3 + 2ax^2 - a^2x - 16$

(a)	Show that $a = 2$	(2 marks)
(b)	Solve $x^3 + 4x^2 - 4x - 16 = 0$	(4 marks)

Q6.

(a)	(x - 3) is a factor of	$x^3 - 8x^2 + ax + 42$	where a is an integer.	
Shov	w that the value of a is	; 1		(2 marks)
(b)	Hence, factorise fully	$x^3 - 8x^2 + x + 42$		(3 marks)

Q7.
$$f(x) = 200x^3 + 100x^2 - 18x - 9$$

- (a) Use the factor theorem to show that (2x + 1) is a factor of f(x). (2 marks) (b) Hence solve f(x) = 0 (3 marks)
 - **Q8.** $f(x) = x^3 10x c$ where *c* is a positive integer. (x + c) is a factor of f(x). Use the factor theorem to work out the value of *c*. (3 marks)

Q9. $f(x) = 3x^3 - 2x^2 - 7x - 2$

(a) Use the factor theorem to show that (3x + 1) is a factor of f(x). (2 marks) (b) Factorise f(x) fully. (3 marks)

Section 2.12

Q1. Write $6x^2 - 24x + 17$ in the form $a(x + b)^2 + c$ where *a*, *b* and *c* are integers. (3 marks)

Q2. Write $2x^2 - 16x + 13$ in the form $a(x + b)^2 + c$ where *a*, *b* and *c* are integers.

Q3.

Write $7 - 12x - 18x^2$ in the form $a - 2(bx + c)^2$

where a, b and c are positive integers.

Q4. The *n*th term of a sequence is $n^2 - 6n + 14$

By completing the square, or otherwise, show that every term is positive. (3 marks)

Q5. You are given that $x^2 + 6x + 2 \equiv (x + h)^2 + k$

- (a) Work out the values of h and k. (2 marks)
- (b) Write down the coordinates of the minimum point on the curve $y = x^2 + 6x + 2$

(1 mark)

(3 marks)

(c) Solve the equation $x^2 + 6x + 2 = 0$ Give your answers in the form $a \pm \sqrt{b}$ (1 mark)

Q6.Write $12x^2 - 60x + 5$ in the form $a(bx + c)^2 + d$ where a, b, c and d are integers. (5 marks)

Section 2.13

Q1. (a)
$$f(x) = 4 - x$$
 $0 \le x < 1$
= $4x - x^2$ $1 \le x < 4$
= $2x - 8$ $4 \le x \le 6$

On the grid, draw the graph of y = f(x)

Q2.

y = f(x) is the graph of a cubic function.

y < 0 for x < 5 $y \ge 0$ for $x \ge 5$ The function is increasing for x < -1decreasing for -1 < x < 2increasing for x > 2Draw a possible sketch of y = f(x) for values of x from -2 to 6 (4 marks)

Q3. A sketch of y = g(x) for domain $0 \le x \le 8$ is shown.

The graph is symmetrical about x = 4Work out the function g(x). The range of g(x) is $0 \le g(x) \le 12$ (5 marks)

Q4. Here is the graph of y = f(x)It consists of a quadratic curve and two straight lines.

Define f(x), stating clearly the domain for each part.

Q5. A function f(*x*) is defined as

f(x) = x + 3	$-3 \le x < 0$
= 3	$0 \le x < 1$
= 5 - 2x	$1 \le x \le 2$

Draw the graph of y = f(x) for $-3 \le x \le 2$ (3 marks)

Q6. <i>A</i>	function f(x) is defined as
f(x) = 3 - 2x	$-2 \le x < 0$
= (1 + x)(3	$(x-x)$ $0 \le x < 4$
= 5x - 25	$4 \le x \le 5$

- (a) Draw the graph of y = f(x)(4 marks)(b) State the range of f(x)(2 marks)
- **Q7.** Draw the graph of y = f(x) f(x) = x + 4 $-4 \le x < 0$ = 4 - 3x $0 \le x < 2$ = -2 $2 \le x \le 5$

Q8. A function f is given by

f(x) = 4x	<i>x</i> < 0
$= x^2 - 8x$	$0 \leq x \leq 8$
= 16 - 2x	<i>x</i> > 8

A sketch of y = f(x) is shown.

Work out **all** the values of *x* for which f(x) = -12

(4 marks)

(4 marks)

Q9. $f(x) = (x - a)^2 + b$ $0 \le x < 2$

= cx + d $2 \le x \le 5$

a, b, c and d are constants.

A sketch of y = f(x) is shown.

Work out the values of a, b, c and d.

Section 2.14 - 2.15

Q1. Here is the graph of $y = x^2 - 6x + 5$ for values of x between 0 and 6

By drawing a suitable **linear** graph on the grid, work out approximate solutions to $x^2 - 7x + 9 = 0$ (3 marks)

Work out the values of a and b.

y 0 3 x -3

(a) Sketch the line
$$y = \frac{1}{2}(x - 3)$$
 on the diagram.
Mark the value where this line crosses the *y*-axis. (2 marks)

(b) By factorising $x^2 - 3x$, or otherwise, work out the smaller solution of

$$x^2 - 3x = \frac{1}{2}(x - 3)$$
 (2 marks)

Here is the graph of $y = 3x - x^2$ for values of x from -1 to 4

By drawing a suitable linear graph on the grid, work out approximate solutions to

$$x^2 - 4x + 2 = 0$$

Q5. Solve the simultaneous equations

$$x - y = \frac{19}{4}$$
$$xy = -3$$

Do **not** use trial and improvement. You **must** show your working. (6 marks)

Q6. Solve the simultaneous equations

$$10x^{2} + 5xy - 7y^{2} + 23 = 0$$
$$x - y = 2$$

Do not use trial and improvement. You must show your working. (5 marks)

Q7. The circle $x^2 + y^2 = 20$ and the line y = 2x intersect at points *D* and *E*.

Not drawn accurately

 $\frac{x-1}{y-2} = 3$ $\frac{x+6}{y-1} = 4$

Q8. Solve the simultaneous equations You **must** show your working.

Q9. Solve the simultaneous equations xy = 2 and y = 3x + 5

Q10. Solve the simultaneous equations. Do not use trial & improvement. x + y = 4 $y^2 = 4x + 5$ (6 marks)

Q11. The equation of a circle is $(x - 2)^2 + (y - 1)^2 = 16$ The equation of a line is y = 2x + 1The circle and the line intersect at two points.

Work out the coordinates of the two points.

(5 marks)

(6 marks)

(5 marks)

Section 2.16

Q1.	Solve the simultaneous equations a + 3b - 2c = 4 4a - 3b + 5c = -5 2a + b + 3c = 9	
١	ou must show your working.	(5 marks)
Q2.	Solve the simultaneous equations. 4a - b + 3c = 27 3a + 2b - c = 5 2a - 5c = -7	
١	You must show your working.	(5 marks)
Q3.	Solve the simultaneous equations 2a + b - c = 8 4a - 3b - 2c = -9 6a + 3b + c = 0	(5 marks)
<u>Sec</u>	<u>tion 2.17</u>	
Q1.	Work out all the negative integer values of <i>x</i> for which $3x^2 < 48$	(3 marks)
Q2.	Work out the range of values of x for which $x^2 - 11x + 28 > 0$ You must show your working.	(3 marks)
Q3.	Work out the integer values of x for which $x^2 - 20x + 96 < 0$	(3 marks)
Q4.	Solve $2x^2 + 4 > (2x - 3)(x + 1)$	(3 marks)
Q5.	Work out the smallest integer value of x that satisfies the inequality	8 – 5 <i>x</i> < 26 (2 marks)

Q6. $-11 < 5x \le 5$ and $6x + 7 \le 4x + 4$ Show that there is **exactly** one integer that *x* can be. (5 marks)

Q7.

w is an integer such that $6 \le 3w < 18$ *x* is an integer such that $-4 \le x \le 3$

(a)	Work out all the possible integer values of <i>w</i> .	(3 marks)
(b)	Write down the highest possible value of x^2	(1 mark)
(c)	Work out the lowest possible value of $w - x$	(2 marks)

Q8. $a^2 < 4$ and a + 2b = 8Work out the range of possible values of *b*. Give your answer as an inequality. **(4 marks)**

Section 2.18

- **Q1.** $w^3x^2y^5 = w^{13}x^7$ Write y in terms of w and x. Give your answer in its simplest form. (2 marks)
- **Q2.** Simplify fully $\left(\frac{2}{3}x^3y\right)^3$ (2 marks)
- **Q3.** $p^{-2} = q^6 \times r^4$ Write *p* in terms of *q* and *r*. Give your answer in its simplest form. (2 marks)
- **Q4.** $(c^5)^p = (c^2)^6$ Work out the value of p. (2 marks)

Q5.
$$y = \frac{a^{\frac{3}{4}} \times a^{\frac{7}{12}}}{\sqrt{a}}$$
 Show that y^6 can be written in the form a^k where k is an integer. (3 marks)

Q6. Simplify fully
$$\frac{(4cd^2)^3}{2cd^4}$$
 (3 marks)

- **Q7.** Simplify fully $(6x^3y^{-2} + 9x^5y) \div 3x^2y^{-3}$ (3 marks)
- **Q8.** Solve $y^{-3} = 125$ (2 marks)
- **Q9.** Solve $x^{-\frac{2}{3}} = 7\frac{1}{9}$ Write your answer as a proper fraction. (5 marks)
- **Q10.** Solve $\sqrt{(33 + \sqrt{x})} = 6$ (3 marks)

Q11. Work out the values of <i>a</i> when $2^{a^2} = 8^a \times 16$	
Do not use trial and improvement. You must show your working.	(4 marks)
Q12. Simplify $\sqrt{x^5 \times x^9}$ Give your answer in the form x^p where p is an ir	iteger. (2 marks)
Q13. Solve $(3 - \sqrt{x})^{\frac{1}{3}} = -2$	(3 marks)
Q14. Write $\frac{15x^8 - 18x^7}{3x^2}$ in the form $ax^n - nx^a$ where <i>a</i> and <i>n</i> are integrated as $a = 10^{-10}$ in the form $ax^n - nx^2$ where <i>a</i> and <i>n</i> are integrated as $a = 10^{-10}$ in the form $ax^n - nx^2$ where <i>a</i> and <i>n</i> are integrated as $a = 10^{-10}$ and $a = $	gers. (2 marks)
Q15. Solve $\frac{56}{\sqrt[3]{x}} = 4$	(2 marks)
Q16. Work out the value of <i>p</i> when $9^{0.5p} \times 81 = 27^{2p} - 1$	(4 marks)
Q17. Work out the value of $\left(3^{\frac{1}{2}} + 3^{\frac{3}{2}}\right)^2$ You must show your working.	(3 marks)
Q18. Solve $\sqrt[3]{(2\sqrt{x}-10)} = 2$	(3 marks)
Q19. By multiplying both sides of the equation by $x^{\frac{1}{2}}$	
Solve $2x^{\frac{3}{2}} - 3x^{\frac{1}{2}} = 7x^{-\frac{1}{2}}$ for $x > 0$ Give your answer to 3 s.f.	(4 marks)
Q20. Simplify fully $\left(\frac{x}{2} + \frac{3x}{5}\right) \div \sqrt{\frac{x^6}{4}}$	(5 marks)
Q21. By multiplying throughout by $x^{\frac{1}{3}}$, or otherwise, solve $x^{\frac{2}{3}} + x^{-\frac{1}{3}} = 6x^{\frac{5}{3}}$	(3 marks)
Q22. Using powers of 2 or otherwise, work out the non-zero value of x for whi	ch $(16^x)^x = \frac{1}{2^{3x}}$
You must show your working.	(4 marks)

Q23.	<i>a</i> is a value greater than 1 Work out the value of <i>m</i> for whi	ich $(a^m)^4 = (a^5)^{2m}$	(2 marks)
<u>Section</u>	<u>on 2.19</u>		
Q1.	Prove that $(5n + 3)(n - 1) + n(n + 3)(n - 1)$	- 2) is a multiple of 3 for	r all integer values of n . (4 marks)
Q2. P	rove algebraically that when n is	an integer $\frac{(2n+1)^2 - (2n+1)^2}{4}$	$(n-1)^2$ is always even. (3 marks)
Q3. S	how that $(2n + 3)^3 + n^3$ is divis	sible by 9 for all integer v	alues of <i>n</i> . (4 marks)
Q4. T A P	he n^{th} term of the linear sequence new sequence is formed by square rove algebraically that all the terr	e 2 7 12 17 aring each term of the lin ms in the new sequence	is $5n - 3$ ear sequence and adding 1. are multiples of 5. (4 marks)
Q5. U	se algebra to prove that the value	e of $\frac{8c^2 + 16}{3c^2 + 6} + \frac{1}{3}$ is an in	nteger for all values of <i>c</i> . (3 marks)
Q6. Pi	ove that $(3x + 5)^2 - 5x(x + 10)$	≥ 0 for all values of x .	(4 marks)
Q7. A	a = 2 - 5x $B = 3x - 1$ $C =$	x^2 Show that ($(2A + 3B)^2 \equiv A + B + C$ (4 marks)
<u>Sections</u>	<u>on 2.20 – 2.21</u>		
<u>Sectio</u> Q1. ⊤	on 2.20 – 2.21 he <i>n</i> th term of a sequence is	$\frac{3n^2}{2+2}$	
<u>Sectio</u> Q1. ⊤ (a)	on 2.20 – 2.21 he <i>n</i> th term of a sequence is	$\frac{3n^2}{2^2+2}$ $\frac{32}{11}$ Work out the val	ue of <i>n</i> . (2 marks)
<u>Sectio</u> Q1. ⊤ (a) (b)	on 2.20 – 2.21 he <i>n</i> th term of a sequence is One term in the sequence is Write down the limiting value of	$\frac{3n^2}{n^2 + 2}$ $\frac{32}{11}$ Work out the value of the sequence as $n \to \infty$	ue of <i>n.</i> (2 marks) ∘ (1 mark)
<u>Sectio</u> Q1. ⊤ (а) (b) Q2. ⊤	be <i>n</i> th term of a sequence is One term in the sequence is Write down the limiting value of the <i>n</i> th term of a sequence is $\frac{14}{14}$	$\frac{3n^2}{n^2 + 2}$ $\frac{32}{11}$ Work out the value of the sequence as $n \to \infty$ $\frac{120 - 5n}{120 + 5n}$	ue of <i>n.</i> (2 marks) ∞ (1 mark)
<u>Sectio</u> Q1. ⊤ (a) (b) Q2. ⊤ (a)	be <i>n</i> th term of a sequence is One term in the sequence is Write down the limiting value of the <i>n</i> th term of a sequence is Work out the position of the term	$\frac{3n^2}{n^2 + 2}$ $\frac{32}{11}$ Work out the value of the sequence as $n \to \infty$ $\frac{420 - 5n}{120 + 5n}$ where that has the value zero.	ue of <i>n</i> . (2 marks) ∞ (1 mark) ∋ro. (2 marks)
<u>Sectio</u> Q1. ⊤ (a) (b) Q2. ⊤ (a) (b)	be <i>n</i> th term of a sequence is One term in the sequence is Write down the limiting value of the <i>n</i> th term of a sequence is Work out the position of the term Write down the limiting value of	$\frac{3n^2}{n^2 + 2}$ $\frac{32}{11}$ Work out the value of the sequence as $n \to \infty$ $\frac{120 - 5n}{120 + 5n}$ where that has the value zero of the sequence as $n - \infty$	ue of <i>n</i> . (2 marks) ∞ (1 mark) ¥ro. (2 marks)

Q3. The nth term of a sequence is $3n^2 - 2$

(a) Work out the 7th term. Give your answer as a fraction in its simplest form. (2 marks)

(b) Show that the limiting value of
$$\frac{2n^2+7}{3n^2-2}$$
 as $n \to \infty$ is $\frac{2}{3}$. (2 marks)

Q4. The *n*th term of a sequence is T_n

$$\mathsf{T}_n = \frac{32n}{3n-7}$$

- (a) Work out the largest value of n for which $T_n > 11$ (3 marks) (b) Write down the limiting value of T_n as $n \to \infty$ (1 mark)
- **Q5.** The *n*th term of a sequence is $n^2 6n + 14$ By completing the square, or otherwise, show that every term is positive. (3 marks)

Q6. The first term of a sequence is 1 - a

The term-to-term rule of a sequence is add 2a then multiply by 3

- (a) Show that the second term is 3 + 3a (1 mark)
- (b) The third term is 16 Work out the value of *a*. (3 marks)

Q7. A linear sequence has first term $7 + 12\sqrt{5}$

The term-to-term rule is

add
$$9-2\sqrt{5}$$

One term of the sequence is an integer. Work out the value of this integer. (2 marks)

Q8. Here are the first four terms of a sequence. $4a \quad 9a \quad 14a \quad 19a$ The *n*th term of the sequence is $\frac{10n-2}{3}$ Work out the value of *a*. (2 marks)

Q9. For sequence A, *n*th term =
$$\frac{n}{14n+30}$$
 For sequence B, *n*th term = $\frac{2}{n}$

The kth term of sequence A equals the kth term of sequence B.

Work out the value of k. You **must** show your working. (4 marks)

Q10. Th	e first three terms of a linear sequence are 30 $30 + 4k$ $30 + 8k$ where k is a constant.	
(a)	Work out an expression, in terms of k , for the 4th term. Give your answer in its simplest form.	(1 mark)
(b)	The 100th term of the sequence is 525 Work out the value of k .	(3 marks)
<u>Sectio</u>	n 2.22	
Q1. The Wo	e first four terms of a quadratic sequence are 10 33 64 103 ork out an expression for the <i>n</i> th term.	 (4 marks)
Q2. T W	he first four terms of a quadratic sequence are 0 1 fork out an expression for the <i>n</i> th term.	0 –3 (3 marks)
Q3. A	quadratic sequence starts -2 -1 4 13	
(a)	Work out an expression for the n th term.	(3 marks)
(b)	A different quadratic sequence has <i>n</i> th term $n^2 + 10n$	
	Use an algebraic method to work out how many terms in the sequent 2000	ce are less than
	Do not use trial and improvement. You must show your working.	(3 marks)
Q4. A c	quadratic sequence starts 302 600 894 118	4
(a)	Work out an expression for the n^{th} term.	(3 marks)
(b)	A term in the sequence has value 0	
	Find the position of this term.	(2 marks)