## 2 ALGEBRA - Further Maths

## Section 2.1-2.5

Q1. $\mathrm{f}(x)=2 x^{2}+7 \quad$ for all values of $x$.
(a) What is the value of $f(-1)$ ?
(b) What is the range of $\mathrm{f}(x)$ ?

Q2. The function $g$ is given by $g(x)=x^{2}-4$ with domain $-1<x<3$ Work out the range of the function.

Q3. $\mathrm{f}(x)=10-x^{2}$ for all values of $x$ g $\quad \mathrm{g}(x)=(x+2 a)(x+3)$ for all values of $x$.
(a) Circle the correct value of $\mathrm{f}(-4)$
26
-6
36
196
(1 mark)
(b) Write down the range of $\mathrm{f}(x)$.
(1 mark)
(c) $g(0)=24$

Show that $a=4$
(d) Hence solve $\mathrm{f}(x)=\mathrm{g}(x)$

Q4. The graph of $y=\mathrm{f}(x)$ is a straight line.
The domain of $\mathrm{f}(x)$ is $1 \leq x \leq 5$
The range of $\mathrm{f}(x)$ is $3 \leq \mathrm{f}(x) \leq 11$
Work out one possible expression for $\mathrm{f}(x)$.

Q5. $\mathrm{h}(x)=5 x-3 \quad$ The range of $\mathrm{h}(x)$ is $-2<\mathrm{h}(x)<1$
Work out the domain of $\mathrm{h}(x)$.

Q6. $\mathrm{f}(x)=x^{4}$
The domain of $\mathrm{f}(x)$ is $x \geq 2$
Work out the range of $\mathrm{f}(x)$.

Q7. The function $f$ is given by $f(x)=\sqrt{2 x-5}$
(a) Which of these inequalities is a possible domain for $\mathrm{f}(x)$ ? Circle the inequality.
$x \geqslant 0$
$x \geqslant \frac{2}{5}$
$x \geqslant 2$
$x \geqslant \frac{5}{2}$
(1 mark)
(b) Work out $x$ when $\mathrm{f}(x)=1.2$
(2 marks)
(c) Work out the value of $f\left(2 \frac{5}{8}\right)$

Give your answer as a fraction in its simplest form.

Q8. $\mathrm{f}(x)=x^{2}-7$ for all values of $x$ $g(x)=1-3 x$ for $-4 \leq x \leq 4$
(a) Work out the range of $\mathrm{f}(x)$. Give your answer as an inequality. (1 mark)
(b) Work out the range of $g(x)$. Give your answer as an inequality. (2 marks)
(c) Solve $2 \mathrm{f}(x)=\mathrm{g}(x) \quad$ You must show your working.

Give your answers to 3 decimal places.
(4 marks)

Q9. $\mathrm{g}(x)=5-x^{2} \quad$ The domain of $\mathrm{g}(x)$ is $-2 \leq x \leq 1$
Work out the range of $\mathrm{g}(x)$.
(2 marks)

Q10. $\mathrm{f}(x)$ is a function with domain all values of $x$.

$$
\mathrm{f}(x)=\sqrt{x^{2}+6 x-a} \quad \text { where } a \text { is a constant. }
$$

Work out the possible values of $a$. Give your answer as an inequality.

Q11. $\mathrm{f}(x)=\left(\frac{9 x}{2}\right)^{-1} \quad \mathrm{~g}(x)=\sqrt{1-p x^{3}} \quad$ where $p$ is a constant.
Given that $\mathrm{f}\left(\frac{1}{3}\right)=\mathrm{g}\left(\frac{1}{3}\right)$ work out the value of $p$.

Q12. $\mathrm{f}(x)=x^{3}-2$
The domain of $\mathrm{f}(x)$ is $x \leq 3$ Work out the range of $\mathrm{f}(x)$.

Q13. $\mathrm{f}(x)=3 x^{2}+6$ for all $x \quad \mathrm{~g}(x)=\sqrt{x-5} \quad x \geq 5$
(a) Work out the value of $\operatorname{gf}(4)$
(b) Show that $\mathrm{fg}(x)$ can be written in the form $a(x-a)$ where $a$ is an integer.

Q14. $\mathrm{h}(x)=x^{2}+5$
k is a function such that $\mathrm{hk}(x)=4 x^{2}+5 \quad$ Work out an expression for $\mathrm{kh}(x) \quad$ (2 marks)

Q15.

$$
h(x)=5 x(x-4)
$$

Solve $\quad 3 \mathrm{~h}(x)=\mathrm{h}(2 x)$
(4 marks)

Q16. $\mathrm{f}(x)=\frac{x-3}{6 x-5}$
Which value of $x$ can not be in the domain of $\mathrm{f}(x)$ ?

Circle your answer.
$\frac{5}{6} \quad \frac{6}{5}$
3
(1 mark)
Q17. $\mathrm{g}(x)=\frac{6}{x} \quad \mathrm{~h}(x)=x-5 \quad$ Solve $\mathrm{gh}(x)=x$

Q18. $\mathrm{f}(x)=(x+4)^{3}$
Work out $\mathrm{f}^{-1}(-8)$
(2 marks)

Q19. $\mathrm{f}(x)=(x+2)^{3} \quad \mathrm{~g}$ is a function such that $\mathrm{gf}(x)=(x+2)^{12}$
Work out an expression for $g(x)$

Q20. The function h is given by $\mathrm{h}(x)=\frac{3+x}{2} \quad$ Work out $\mathrm{h}^{-1}(x) \quad$ (2 marks)

## Section 2.6

Q1. $(3 x+a)(5 x-4) \equiv 15 x^{2}-2 x+b \quad$ Work out the values of $a$ and $b$.

Q2. Expand and simplify $(3 w+2 y)(w-4 y)$

Q3. Expand and simplify $\left(y^{2}-5 y+2\right)(2 y-3)$
(3 marks)

Q4. Expand and simplify $\frac{3}{x^{2}}\left(\frac{x}{3}+3 x^{2}-1\right)$
(3 marks)

Q5. $2 x^{2}-2 b x+7 a \equiv 2(x-a)^{2}+3$
Work out the two possible pairs of values of $a$ and $b$.
(6 marks)

Q6. $x^{2}+2 a x+b \equiv(x-5)^{2}-a$
Work out the values of $a$ and $b$.
(3 marks)

Q7. $3 x^{3}-2 x^{2}-147 x+98 \equiv(a x-c)(b x+d)(b x-d)$
where $a, b, c$ and $d$ are positive integers. Work out the values of $a, b, c$ and $d$. (3 marks)

Q8. $(x+4)\left(x^{2}-k x-5\right)$ is expanded and simplified.
The coefficient of the $x^{2}$ term is twice the coefficient of the $x$ term. Work out the value of $k$.
(3 marks)

Q9. The $x^{2}$ term in the expansion of $(3 x+4)\left(x^{2}+p x+5\right)$ is $-23 x^{2}$ Work out the value of $p$.

Q10.Expand and simplify fully $(x+2)(x+3)(x+4)$

Q11. $A=2-5 x \quad B=3 x-1 \quad C=x^{2} \quad$ Show that $\quad(2 A+3 B)^{2} \equiv A+B+C$

Q12. $p(x-1)+2(3 x+k) \equiv 4(x+2) \quad$ where $p$ and $k$ are integers.
Work out the values of $p$ and $k$.
(4 marks)

Q13. $\quad$ Simplify $(n+2)^{3}-n^{2}(n-5)$
Give your answer in the form $\quad a n^{2}+b n+c$ where $a, b$ and $c$ are integers. marks)

Q14. Show that $(x+1)(x+3)(x+4)-x\left(x^{2}+7 x+11\right)$
can be written in the form $\quad(x+a)(x+b) \quad$ where $a$ and $b$ are positive integers. (5 marks)

Q15. $3 x^{2}+2 b x+8 a$ can be written in the form $3(x+a)^{2}+b+2$
Work out the two possible pairs of values of $a$ and $b$.
(6 marks)

Q16. Expand and simplify fully $\left(5 x+3 y^{2}\right)\left(4 x-y^{2}\right)$

Q17. Expand and simplify fully $(3 x+4)(2 x-3)(5 x-2)$

## Section 2.7

Q1. Expand and simplify fully $(3+2 x)^{5}$

Q2. The coefficient of $x^{4}$ in the expansion of $(a+2 x)^{6} \quad$ is 1500
Work out the two possible values of $a$.
(3 marks)

Q3. The coefficient of the $x^{4}$ term in the expansion of $(2 x+a)^{6}$ is 60 .
Work out the possible values of $a$.
(4 marks)

Q4. The coefficient of $x^{2}$ in the expansion of $(3+a x)^{4}$ is 150
Work out the two possible values of $a$.

## Section 2.8

Q1. Factorise fully $(x+y)^{2}+(x+y)(2 x+5 y)$
(3 marks)

Q2.
(a) Factorise fully $5 m^{2}-20 p^{2}$
(3 marks)
(b) You are given that $\quad p=15$ and $5 m^{2}-20 p^{2}=0$

Using your answer to part (a), or otherwise, work out the values of $m$. (2 marks)

Q3. Factorise fully $12 c^{2} d-9 d^{2}$
(2 marks)

Q4.
(a) Show that $(x+7)^{2}-(x-3)^{2}$ simplifies to $20(x+2)$
(3 marks)
(b) Hence, or otherwise, work out $107^{2}-97^{2}$

Q5. Factorise fully $(w+4)^{3}-(w+4)^{2}(w+1)$

Q6. Factorise fully $3 x^{2}-12$

Q7. Factorise $5 x^{2}+4 x y-12 y^{2}$

Q8. Factorise fully $(x+6)^{4}+(x+6)^{3}(3 x+4)$
Do not attempt to expand the brackets.

Q9. Factorise fully $48-75 x^{2}$

Q10. Factorise fully $6(y+3)^{5}+4(y+3)^{4}$
Give your answer in its simplest form.
Do not attempt to expand $(y+3)^{5}$ or $(y+3)^{4}$

Q11. Factorise fully $12 p q^{3} r-18 p q^{2} r^{2}+24 p q^{2} r$

Q12. Factorise fully $6 x^{2}+26 x y-20 y^{2}$

Q13. Factorise fully $\quad x^{4} y+3 x^{2} y^{3}$

Q14. Factorise fully $x^{6}-9 x^{4}$

Q15. Factorise fully $x^{4}-81$

## Section 2.9

Q1. Simplify fully $\frac{5 x}{(x+4)(x-6)}-\frac{3}{(x-6)}$
(4 marks)

Q2. Simplify $\frac{x^{2}+4 x-12}{x^{2}-25} \div \frac{x+6}{x^{2}-5 x}$
(5 marks)

Q3. Simplify fully $\frac{4 x^{2}+19 x-5}{9 x^{2}-16} \div \frac{x+5}{3 x-4}$

Q4. (a) Show that $\frac{4}{x}+\frac{2}{x-1}$ simplifies to $\frac{6 x-4}{x(x-1)}$
(b) Hence, or otherwise, solve $\frac{4}{x}+\frac{2}{x-1}=3$ Give your solutions to 3 significant figures.

Q5. Solve $\frac{4}{x-2}+\frac{1}{x+3}=5$
(7 marks)

Q6. Simplify fully $\frac{8 c^{7}}{15 d^{6}} \div \frac{6 c^{2}}{5 d^{3}}$
(3 marks)

Q7. (a) Show that $\frac{c^{2}+5 c+4}{3 c+3}$ simplifies to $\frac{c+4}{3}$
(b) Hence, or otherwise, simplify fully $\frac{c^{2}+5 c+4}{3 c+3}+\frac{3-2 c}{6}$
(2 marks)

Q8. Write as a single fraction $\frac{5}{m+1}+\frac{6}{m-4}$
Give your answer in its simplest form.
(4 marks)

Q9. By factorising fully, simplify $\frac{x^{4}-x^{3}-2 x^{2}}{x^{4}-5 x^{2}+4}$

Q10. Solve $\frac{3}{x-2}+\frac{2}{x-1}=5$
Write your solutions to 3 significant figures. (6 marks)

Q11. Simplify fully $\left(\frac{x}{2}+\frac{3 x}{5}\right) \div \sqrt{\frac{x^{6}}{4}}$
(5 marks)

Q12. Simplify fully $\frac{8 a}{3 a+6} \times \frac{5 a+10}{3 a^{2}} \div \frac{4}{15 a^{3}}$
(3 marks)

Q13. Simplify fully $\frac{x}{x-3}+\frac{6}{(x-3)(x-5)}$
(4 marks)

Q14. Write $\frac{7}{9 x}+\frac{2}{3 x^{2}}$ as a single fraction in its simplest form.
(3 marks)

Q15.
Show that $\frac{x^{4}}{x+4} \times \frac{x+2}{x} \div \frac{x^{2}}{3 x+12}$
simplifies to the form $a x^{2}+b x$ where $a$ and $b$ are integers.
(4 marks)

Q16. Simplify fully $\frac{x-x^{3}}{2 x+2 x^{2}}$ You must show your working.

Q17. Simplify fully $\frac{15 x^{2} y-5 x y^{2}}{12 x-4 y}$
(3 marks)

Q18. Write $\frac{5}{6 a}+\frac{a}{4}$ as a single fraction. Give your answer in its simplest form. (2 marks)

Q19. Simplify $\frac{8 x^{3}-50 x}{2 x\left(6 x^{2}-x-35\right)}$
Give your answer in the form $\frac{a x+b}{c x+d}$ where $a, b, c$ and $d$ are integers. (5 marks)

Q20. Work out $\frac{7}{2 x^{2}}+\frac{4}{3 x}$
Give your answer as a single fraction in its simplest form.
(2 marks)

Q21. Simplify fully $\frac{6 c^{4}-c^{3}}{36 c^{2}-1}$
(3 marks)

Q22. Simplify fully $\frac{10 x-2 y}{3 y-15 x}$
(2 marks)

## Section 2.10

Q1. Rearrange ef $=\frac{5 e+4}{3}$ to make $e$ the subject.
(3 marks)

Q2. Rearrange $y=\sqrt{\frac{x+2 w}{3}}$ to make $w$ the subject.

Q3. $5 t+3=4 w(t+2)$
(a) Rearrange the formula to make $t$ the subject.
(4 marks)
(b) Work out the exact value of $t$ when $w=-\frac{1}{8}$

Give your answer in its simplest form.

Q4. $S=\frac{a}{1-r}$
(a) Show that $r=\frac{S-a}{S}$
(3 marks)
(b) Work out the value of $r$ when $S=10 a$

Q5. Rearrange $x=\frac{2 w+1}{5-3 w}$ to make $w$ the subject.

Q6. Make $y$ the subject of $\sqrt{\frac{3 x y}{x+y}}=4$

Q7. Rearrange $y=\frac{8(w-x)}{x}$ to make $x$ the subject.

Q8. Rearrange $\frac{1}{x y}=4-\frac{3}{y}$ to make $x$ the subject.

Q9. Rearrange $t=\frac{3 w^{3}+a}{w^{3}-2}$ to make $w$ the subject.

Q10. Rearrange $m=\frac{2 p+1}{p}+\frac{p+5}{3 p}$ to make $p$ the subject.

## Section 2.11

Q1. $\mathrm{f}(x)=2 x^{3}+11 x^{2}+12 x-9$
(a) Use the factor theorem to show that $(2 x-1)$ is a factor of $\mathrm{f}(x)$.
(2 marks)
(b) Show that $\mathrm{f}(x)=0$ has exactly two solutions.

Q2.
(a) Use the factor theorem to show that $(x-1)$ and $(x-4)$ are factors of $x^{3}-21 x+20$
(b) Show that $(x-1)$ and $(x-4)$ are also factors of $x^{3}-10 x^{2}+29 x-20 \quad$ (2 marks)
(c) Hence, simplify fully $\frac{x^{3}-21 x+20}{x^{3}-10 x^{2}+29 x-20}$
(3 marks)

Q3. $\mathrm{f}(x)=x^{3}+a x^{2}+b x+24$ for all values of $x$.
Two of the factors of $\mathrm{f}(x)$ are $(x-2)$ and $(x+3)$. Work out the values of $a$ and $b$. ( 5 marks)

Q4. $(x-a)$ is a factor of $2 x^{3}-7 a x+3 a$
Work out the largest possible value of $a$.

Q5. $(x-a)$ is a factor of $x^{3}+2 a x^{2}-a^{2} x-16$
(a) Show that $a=2$
(b) Solve $x^{3}+4 x^{2}-4 x-16=0$

## Q6.

(a) $(x-3)$ is a factor of $x^{3}-8 x^{2}+a x+42 \quad$ where $a$ is an integer.

Show that the value of $a$ is 1
(b) Hence, factorise fully $x^{3}-8 x^{2}+x+42$

Q7. $\mathrm{f}(x)=200 x^{3}+100 x^{2}-18 x-9$
(a) Use the factor theorem to show that $(2 x+1)$ is a factor of $\mathrm{f}(x)$.
(2 marks)
(b) Hence solve $\mathrm{f}(x)=0$

Q8. $\mathrm{f}(x)=x^{3}-10 x-c \quad$ where $c$ is a positive integer. $\quad(x+c)$ is a factor of $\mathrm{f}(x)$.
Use the factor theorem to work out the value of $c$.
(3 marks)

Q9. $\mathrm{f}(x)=3 x^{3}-2 x^{2}-7 x-2$
(a) Use the factor theorem to show that $(3 x+1)$ is a factor of $\mathrm{f}(x)$.
(2 marks)
(b) Factorise $\mathrm{f}(x)$ fully.
(3 marks)

## Section 2.12

Q1. Write $6 x^{2}-24 x+17$ in the form $a(x+b)^{2}+c \quad$ where $a, b$ and $c$ are integers.
(3 marks)

Q2. Write $2 x^{2}-16 x+13$ in the form $a(x+b)^{2}+c$ where $a, b$ and $c$ are integers.
(4 marks)

Q3.
Write $\quad 7-12 x-18 x^{2}$ in the form $a-2(b x+c)^{2}$
where $a, b$ and $c$ are positive integers.

Q4. The $n$th term of a sequence is $n^{2}-6 n+14$
By completing the square, or otherwise, show that every term is positive. (3 marks)

Q5. You are given that $x^{2}+6 x+2 \equiv(x+h)^{2}+k$
(a) Work out the values of $h$ and $k$.
(2 marks)
(b) Write down the coordinates of the minimum point on the curve $y=x^{2}+6 x+2$
(1 mark)
(c) Solve the equation $x^{2}+6 x+2=0 \quad$ Give your answers in the form $a \pm \sqrt{b}$ (1 mark)

Q6.Write $12 x^{2}-60 x+5$ in the form $\quad a(b x+c)^{2}+d \quad$ where $\quad a, b, c$ and $d$ are integers.
(5 marks)

## Section 2.13

Q1. (a) $\mathrm{f}(x)=4-x \quad 0 \leqslant x<1$

$$
\begin{array}{cc}
=4 x-x^{2} & 1 \leqslant x<4 \\
=2 x-8 & 4 \leqslant x \leqslant 6
\end{array}
$$

On the grid, draw the graph of $\quad y=\mathrm{f}(x)$

(4 marks)
(b) $\mathrm{g}(x)=6-3 x \quad$ Work out $\quad \mathrm{g}^{-1}(x)$.
(2 marks)

Q2.
$y=\mathrm{f}(x) \quad$ is the graph of a cubic function.
$y<0$ for $x<5$
$y \geqslant 0 \quad$ for $\quad x \geqslant 5$
The function is
increasing for $x<-1$
decreasing for $-1<x<2$
increasing for $x>2$
Draw a possible sketch of $\quad y=\mathrm{f}(x) \quad$ for values of $x$ from -2 to 6
(4 marks)

Q3. A sketch of $y=g(x)$ for domain $0 \leq x \leq 8$ is shown.


The graph is symmetrical about $x=4$
The range of $\mathrm{g}(x)$ is $0 \leq \mathrm{g}(x) \leq 12$
Work out the function $\mathrm{g}(x)$.
(5 marks)

Q4. Here is the graph of $\quad y=\mathrm{f}(x)$
It consists of a quadratic curve and two straight lines.


Define $\mathrm{f}(x)$, stating clearly the domain for each part.
(4 marks)

Q5. A function $\mathrm{f}(x)$ is defined as

$$
\begin{array}{ccc}
\mathrm{f}(x)=x+3 & -3 \leq x<0 \\
=3 & 0 \leq x<1 \\
=5-2 x & 1 \leq x \leq 2
\end{array}
$$

Draw the graph of $\quad y=\mathrm{f}(x)$ for $-3 \leq x \leq 2$

Q6. A function $\mathrm{f}(\mathrm{x})$ is defined as
$\mathrm{f}(\mathrm{x})=3-2 x$
$-2 \leq x<0$
$=(1+x)(3-x) \quad 0 \leq x<4$
$=5 x-25$
$4 \leq x \leq 5$
(a) Draw the graph of $y=\mathrm{f}(x)$
(b) State the range of $\mathrm{f}(x)$

Q7. Draw the graph of $y=\mathrm{f}(x)$

$$
\begin{aligned}
\mathrm{f}(x) & =x+4 & & -4 \leq x<0 \\
& =4-3 x & & 0 \leq x<2 \\
& =-2 & & 2 \leq x \leq 5
\end{aligned}
$$

(4 marks)

Q8. A function $f$ is given by

$$
\begin{array}{rlrl}
\mathrm{f}(x) & =4 x & x & <0 \\
& =x^{2}-8 x & 0 \leqslant x \leqslant 8 \\
& =16-2 x & x>8
\end{array}
$$

A sketch of $y=\mathrm{f}(x)$ is shown.


Work out all the values of $x$ for which $\mathrm{f}(x)=-12$
(4 marks)

Q9. $\mathrm{f}(x)=(x-\mathrm{a})^{2}+b \quad 0 \leq x<2$

$$
=c x+d \quad 2 \leq x \leq 5
$$

$a, b, c$ and $d$ are constants.
A sketch of $y=\mathrm{f}(x)$ is shown.


Work out the values of $a, b, c$ and $d$.
(4 marks)

## Section 2.14-2.15

Q1. Here is the graph of $y=x^{2}-6 x+5$ for values of $x$ between 0 and 6


By drawing a suitable linear graph on the grid, work out approximate solutions to $x^{2}-7 x+9=0$

Q2. The points $A(-1,-4)$ and $B\left(-2,-\frac{4}{3}\right)$ lie on the curve $y=a b^{x}$ as shown.


Not drawn
accurately

Work out the values of $a$ and $b$.
(4 marks)

Q3. The diagram shows a sketch of $y=x^{2}-3 x$

(a) Sketch the line $y=\frac{1}{2}(x-3) \quad$ on the diagram. Mark the value where this line crosses the $y$-axis.
(b) By factorising $x^{2}-3 x$, or otherwise, work out the smaller solution of

$$
x^{2}-3 x=\frac{1}{2}(x-3)
$$

Q4.
Here is the graph of $y=3 x-x^{2}$ for values of $x$ from -1 to 4


By drawing a suitable linear graph on the grid, work out approximate solutions to

$$
x^{2}-4 x+2=0
$$

Q5. Solve the simultaneous equations

$$
\begin{aligned}
& x-y=\frac{19}{4} \\
& x y=-3
\end{aligned}
$$

Do not use trial and improvement. You must show your working.

Q6. Solve the simultaneous equations

$$
\begin{array}{r}
10 x^{2}+5 x y-7 y^{2}+23=0 \\
x-y=2
\end{array}
$$

Do not use trial and improvement. You must show your working.

Q7. The circle $x^{2}+y^{2}=20$ and the line $y=2 x$ intersect at points $D$ and $E$.
Not drawn accurately


Work out the coordinates of $D$ and $E$. You must show your working.

Q8. Solve the simultaneous equations

$$
\frac{x-1}{y-2}=3 \quad \frac{x+6}{y-1}=4
$$

You must show your working.

Q9. Solve the simultaneous equations

$$
\begin{equation*}
x y=2 \text { and } y=3 x+5 \tag{6marks}
\end{equation*}
$$

Q10. Solve the simultaneous equations. Do not use trial \& improvement.

$$
\begin{aligned}
& x+y=4 \\
& y^{2}=4 x+5
\end{aligned}
$$

Q11. The equation of a circle is $(x-2)^{2}+(y-1)^{2}=16$
The equation of a line is $y=2 x+1$
The circle and the line intersect at two points.
Work out the coordinates of the two points.

## Section 2.16

Q1. Solve the simultaneous equations

$$
\begin{gathered}
a+3 b-2 c=4 \\
4 a-3 b+5 c=-5 \\
2 a+b+3 c=9
\end{gathered}
$$

You must show your working.

Q2. Solve the simultaneous equations.

$$
\begin{aligned}
& 4 a-b+3 c=27 \\
& 3 a+2 b-c=5 \\
& 2 a-5 c=-7
\end{aligned}
$$

## You must show your working.

Q3. Solve the simultaneous equations

$$
\begin{aligned}
& 2 a+b-c=8 \\
& 4 a-3 b-2 c=-9 \\
& 6 a+3 b+c=0
\end{aligned}
$$

## Section 2.17

Q1. Work out all the negative integer values of $x$ for which $3 x^{2}<48$

Q2. Work out the range of values of $x$ for which $x^{2}-11 x+28>0$
You must show your working.

Q3. Work out the integer values of $x$ for which $x^{2}-20 x+96<0$

Q4. Solve $2 x^{2}+4>(2 x-3)(x+1)$

Q5. Work out the smallest integer value of $x$ that satisfies the inequality $8-5 x<26$

Q6. $-11<5 x \leq 5$ and $6 x+7 \leq 4 x+4$
Show that there is exactly one integer that $x$ can be.

Q7.
$w$ is an integer such that $6 \leq 3 w<18$
$x$ is an integer such that $-4 \leq x \leq 3$
(a) Work out all the possible integer values of $w$.
(b) Write down the highest possible value of $x^{2}$
(c) Work out the lowest possible value of $w-x$

Q8. $a^{2}<4$ and $a+2 b=8$
Work out the range of possible values of $b$. Give your answer as an inequality. (4 marks)

## Section 2.18

Q1. $w^{3} x^{2} y^{5}=w^{13} x^{7}$
Write $y$ in terms of $w$ and $x$. Give your answer in its simplest form.
(2 marks)

Q2. Simplify fully $\left(\frac{2}{3} x^{3} y\right)^{3}$
(2 marks)

Q3. $p^{-2}=q^{6} \times r^{4}$
Write $p$ in terms of $q$ and $r$. Give your answer in its simplest form.
(2 marks)

Q4. $\left(c^{5}\right)^{p}=\left(c^{2}\right)^{6} \quad$ Work out the value of $p$ (2 marks)

Q5. $y=\frac{a^{\frac{3}{4}} \times a^{\frac{7}{12}}}{\sqrt{a}}$ Show that $y^{6}$ can be written in the form $a^{k}$ where $k$ is an integer. (3 marks)
Q6. Simplify fully $\frac{\left(4 c d^{2}\right)^{3}}{2 c d^{4}}$
(3 marks)

Q7. Simplify fully $\left(6 x^{3} y^{-2}+9 x^{5} y\right) \div 3 x^{2} y^{-3}$
(3 marks)

Q8. Solve $y^{-3}=125$
(2 marks)

Q9. Solve $x^{-\frac{2}{3}}=7 \frac{1}{9} \quad$ Write your answer as a proper fraction.
(5 marks)

Q10. Solve $\sqrt{(33+\sqrt{x})}=6$
(3 marks)

Q11. Work out the values of $a$ when $\quad 2^{a^{2}}=8^{a} \times 16$
Do not use trial and improvement. You must show your working.

Q12. Simplify $\sqrt{x^{5} \times x^{9}}$ Give your answer in the form $x^{p}$ where $p$ is an integer. (2 marks)

Q13. Solve $(3-\sqrt{x})^{\frac{1}{3}}=-2$
(3 marks)

Q14. Write $\frac{15 x^{8}-18 x^{7}}{3 x^{2}}$ in the form $a x^{n}-n x^{a}$ where $a$ and $n$ are integers. (2 marks)

Q15. Solve $\frac{56}{\sqrt[3]{x}}=4$

Q16. Work out the value of $p$ when $\quad 9^{0.5 p} \times 81=27^{2 p}-1$

Q17. Work out the value of $\left(3^{\frac{1}{2}}+3^{\frac{3}{2}}\right)^{2}$ You must show your working.
(3 marks)

Q18. Solve $\sqrt[3]{(2 \sqrt{x}-10)}=2$
(3 marks)

Q19. By multiplying both sides of the equation by $x^{\frac{1}{2}}$
Solve $2 x^{\frac{3}{2}}-3 x^{\frac{1}{2}}=7 x^{-\frac{1}{2}}$ for $x>0 \quad$ Give your answer to 3 s.f. (4 marks)

Q20. Simplify fully $\left(\frac{x}{2}+\frac{3 x}{5}\right) \div \sqrt{\frac{x^{6}}{4}}$
(5 marks)

Q21. By multiplying throughout by $x^{\frac{1}{3}}$, or otherwise, solve $x^{\frac{2}{3}}+x^{-\frac{1}{3}}=6 x^{\frac{5}{3}}$ (3 marks) Q22. Using powers of 2 or otherwise, work out the non-zero value of $x$ for which $\left(16^{x}\right)^{x}=\frac{1}{2^{3 x}}$ You must show your working.

Q23. $a$ is a value greater than 1
Work out the value of $m$ for which $\quad\left(a^{m}\right)^{4}=\left(a^{5}\right)^{2 m}$
(2 marks)

## Section 2.19

Q1. Prove that $(5 n+3)(n-1)+n(n+2)$ is a multiple of 3 for all integer values of $n$. ( 4 marks)

Q2. Prove algebraically that when $n$ is an integer $\frac{(2 n+1)^{2}-(2 n-1)^{2}}{4}$ is always even. (3 marks)

Q3. Show that $(2 n+3)^{3}+n^{3}$ is divisible by 9 for all integer values of $n$.
(4 marks)

Q4. The $n^{\text {th }}$ term of the linear sequence $\begin{array}{llllll}2 & 7 & 12 & 17 \ldots & \text { is } 5 n-3\end{array}$
A new sequence is formed by squaring each term of the linear sequence and adding 1 . Prove algebraically that all the terms in the new sequence are multiples of 5 .

Q5. Use algebra to prove that the value of $\frac{8 c^{2}+16}{3 c^{2}+6}+\frac{1}{3}$ is an integer for all values of $c$. (3 marks)

Q6. Prove that $(3 x+5)^{2}-5 x(x+10) \geq 0$ for all values of $x$.

Q7. $A=2-5 x \quad B=3 x-1 \quad C=x^{2} \quad$ Show that $\quad(2 A+3 B)^{2} \equiv A+B+C$

## Section 2.20-2.21

Q1. The $n$th term of a sequence is $\frac{3 n^{2}}{n^{2}+2}$
(a) One term in the sequence is $\frac{32}{11}$ Work out the value of $n$.
(2 marks)
(b) Write down the limiting value of the sequence as $n \rightarrow \infty$
(1 mark)

Q2. The $n$th term of a sequence is $\frac{1420-5 n}{1420+5 n}$
(a) Work out the position of the term that has the value zero.
(2 marks)
(b) Write down the limiting value of the sequence as $n \rightarrow \infty$

Q3. The nth term of a sequence is $\frac{2 n^{2}+7}{3 n^{2}-2}$
(a) Work out the 7th term. Give your answer as a fraction in its simplest form. (2 marks)
(b) Show that the limiting value of $\frac{2 n^{2}+7}{3 n^{2}-2}$ as $n \rightarrow \infty$ is $\frac{2}{3}$.

Q4. The $n$th term of a sequence is $\mathrm{T}_{n}$
$\mathrm{T}_{n}=\frac{32 n}{3 n-7}$
(a) Work out the largest value of $n$ for which $\mathrm{T}_{n}>11$
(3 marks)
(b) Write down the limiting value of $\mathrm{T}_{n}$ as $n \rightarrow \infty$

Q5. The $n$th term of a sequence is $n^{2}-6 n+14$
By completing the square, or otherwise, show that every term is positive.
(3 marks)

Q6. The first term of a sequence is $1-a$
The term-to-term rule of a sequence is add $2 a$ then multiply by 3
(a) Show that the second term is $3+3 a$
(1 mark)
(b) The third term is $16 \quad$ Work out the value of $a$.

Q7. A linear sequence has first term $7+12 \sqrt{5}$
The term-to-term rule is $\quad$ add $9-2 \sqrt{5}$

One term of the sequence is an integer. Work out the value of this integer. (2 marks)

Q8. Here are the first four terms of a sequence. $\begin{array}{lllll}4 a & 9 a & 14 a & 19 a\end{array}$
The $n$th term of the sequence is $\frac{10 n-2}{3}$ Work out the value of $a$.
(2 marks)

Q9. For sequence $\mathrm{A}, \quad n$th term $=\frac{n}{14 n+30} \quad$ For sequence $\mathrm{B}, \quad n$th term $=\frac{2}{n}$
The $k$ th term of sequence $A$ equals the $k$ th term of sequence $B$.
Work out the value of $k$. You must show your working.

Q10.The first three terms of a linear sequence are $30 \quad 30+4 k \quad 30+8 k \quad$ where $k$ is a constant.
(a) Work out an expression, in terms of $k$, for the 4th term. Give your answer in its simplest form.
(b) The 100th term of the sequence is 525

Work out the value of $k$.

## Section 2.22

Q1. The first four terms of a quadratic sequence are $\begin{array}{llllll}10 & 33 & 64 & 103 & \ldots\end{array}$ Work out an expression for the $n$th term.
(4 marks)

Q2. The first four terms of a quadratic sequence are 0 Work out an expression for the $n$th term.

0
$-3$
(3 marks)

Q3. A quadratic sequence starts $\begin{array}{llllll}-2 & -1 & 4 & 13\end{array}$
(a) Work out an expression for the $n$th term.
(b) A different quadratic sequence has $n$th term $n 2+10 n$

Use an algebraic method to work out how many terms in the sequence are less than 2000

Do not use trial and improvement. You must show your working.
(3 marks)

Q4. A quadratic sequence starts $302 \quad 600 \quad 894 \quad 1184$
(a) Work out an expression for the $n^{\text {th }}$ term.
(3 marks)
(b) A term in the sequence has value 0

Find the position of this term.
(2 marks)

