2 ALGEBRA – Further Maths

Jump to: Section 2.1 – 2.5 Section 2.6 Section 2.7 Section 2.8 Section 2.9 Section 2.10 Section 2.11 Section 2.12 Section 2.13 <u>Section 2.14 – 2.15</u> Section 2.16 Section 2.17 Section 2.18 Section 2.19 Section 2.20 – 2.21 Section 2.22

Section 2.1 – 2.5

Mark schemes

Q1.

	Answer	Mark	Comments
(a)	9	B1	
(b)	$f(x) \ge 7$	B1	Allow $y \ge 7$

Q2.

Answer	Mark	Comments
$-4 \leq g(x) < 5$	B2	oe eg $5 > g(x) \ge -4$

or $g(x) < 5$ and $g(x) \ge -4$	word 'and' must be included if writing two inequalities for B2 or B1 or SC1
	B1 - 4 < $g(x)$ < 5 or - 4 < $g(x) \le 5$
	or $-4 \leq g(x) \leq 5$
	or $g(x) < 5$ and $g(x) > -4$
	or $g(x) \leq 5$ and $g(x) > -4$
	or $g(x) \leq 5$ and $g(x) \geq -4$
	or k < $g(x)$ < 5 where k is less than 5
	or $k \leq g(x) < 5$ where k is less than 5
	or $-4 \leq g(x) < m$ where m is greater than -4
	SC1 – 4 ≤ <i>x</i> < 5
	or $x < 5$ and $x \ge -4$
	or only – 4 and 5 seen (condone 9 given as a range in this case)

Additional Guidance			
Condone $g(x)$ replaced by eg y or g or gx or f or fx or G or Gx or $x^2 - 4$			
$eg1 - 4 \leq f(x) < 5$	B2		
$eg2 - 4 \leq f(x) < 5$	B1		
[-4, 5)	B2		
(- 4, 5) or (- 4, 5] or [- 4, 5]	B1		
Condone eg g(x) = $-4 \leq g(x) < 5$	B2		
Condone eg g(<i>x</i>) = $-4 < g(x) < 5$	B1		
B2 response with a list of integers on answer line	B1		
B1 response with a list of integers on answer line	B0		
Only a list of integers	B0		

Q3.

	Answer	Mark	Comments
(a)	-6	B1	
(b)	$f(x) \le 10 \text{ or } 10 \ge f(x)$	B1	Condone $y \le 10$ or $10 \ge y$
(c)	6 <i>a</i> = 24 (so <i>a</i> = 4)	B1	B1 for $2a \times 3 = 24$
			B1 for 24 = (0 + 8)(0 + 3)
			8 × 3 = 24 on its own is B0
(d)	$10 - x^2 = (x + 8)(x + 3)$	M1	oe
	or $10 - x^2 = x^2 + 2ax + 3x + 6a$		
	$2x^2 + 11x + 14 (= 0)$	M1dep	oe allow one error
	(2x + c)(x + d) (= 0)	M1dep	cd = 14 or c + 2d = 11
			ft from their quadratic (factorising or correct substitution in quadratic formula)
	−3.5 and −2	A1	oe

Q4.

Answer	Mark	Comments
Identifies (1, 3) or (5, 11)	B1	May be implied by M1 or seen in a table of values or on a graph or as a mapping (eg $1 \rightarrow 3$)
$\frac{\text{their } 11 - \text{their } 3}{\text{their } 5 - \text{their } 1} (= 2)$	M1	oe
y – their 3 = their $2(x - \text{their})$ 1) or	M1	y = their $2x + c$ and substitutes their (1, 3) or their (5, 11)
y – their 11 = their 2(x – their 5)		
(y =) 2x + 1	A1	

Alternative method 1		
Identifies (1, 11) or (5, 3)	B1	May be implied by M1 or seen in a table of values or on a graph or as a mapping (eg $3 \rightarrow 1$)

$\frac{\text{their } 11 - \text{their } 3}{\text{their } 1 - \text{their } 5} (= -2)$	M1	oe
y – their 11 = their –2(x – their 1)	M1	y = their – 2 x + c and substitutes their (1, 11) or their (5, 3)
or		
y – their 3 = their –2(x – their 5)		
(y =) - 2x + 13	A1	

Alternative method 2		
m + c = 3 or $5m + c = 11$	B1	m + c = 11 or $5m + c = 3$
Eliminates a letter from their 2 equations	M1	Eliminates a letter from their 2 equations
eg 5 <i>m</i> − <i>m</i> = 11 − 3		eg 5 <i>m</i> - <i>m</i> = 3 - 11
m = 2 or $c = 1$	A1	m = -2 or $c = 13$
(y =) 2x + 1	A1	(y =) - 2x + 13

Q5.

Answer	Mark	Comments
5x - 3 < 1 or $-2 < 5x - 3$	M1	oe
or $-2 < 5x - 3 < 1$		eg $x < \frac{4}{5}$ or $\frac{1}{5} < x$ or $1 < 5x < 4$
$\frac{1}{5} < x < \frac{4}{5}$ or $0.2 < x < 0.8$	A1	oe $SC1 \frac{1}{5} < h(x) < \frac{4}{5} \text{ (condone} \\ \text{absence of } (x) \text{ or absence of} \\ \text{brackets)}$ or $\frac{1}{5} < y < \frac{4}{5}$ or $\frac{1}{5} < x < \frac{4}{5}$

Additional Guidance						
4	1	1	M1 A1			
Both inequalities $x < 5$	and 5	$\overline{5} < x$ given as their answer				

M1 Must use correct inequality symbol unless recovered in the A mark	M0 A0
$5x - 3 \le 1$ or $5x - 3 > 1$ (answer not correct)	
M1 If using equations award M0 unless recovered in the A mark	M1 A1
5x - 3 = 1 $5x - 3 = -2$	
0.2 < <i>x</i> < 0.8	

Q6.

Answer	Mark	Comments
$f(x) \ge 16$ or $y \ge 16$	B1	Condone absence of (<i>x</i>) or absence of brackets

Additional Guidance	
<i>x</i> ≥ 16	B0
$f(x) > 16$ or $f(x) \le 16$ or $f(x) < 16$	B0
16	B0

Q7.

	Answer	Mark	Comments
(a)	$x \ge \frac{5}{2}$	B1	
(b)	1. $2^2 = 2x - 5$ or $1.44 = 2x - 5$	M1	oe
	(<i>x</i> =) 3.22	A1	oe eg 50

(c)	$\sqrt{5\frac{1}{4}-5}$ or $\sqrt{\frac{21}{4}-5}$	M1	oe $\sqrt{\frac{2(21)}{8}-5}$ $\sqrt{\frac{42}{8}-5}$ $\sqrt{2(2\frac{5}{8})-5}$ $\sqrt{5.25-5}$ $\sqrt{2(2.625)-5}$
	$\sqrt{\frac{1}{4}}$ or $\sqrt{(0.25)}$	A1	oe

$\frac{1}{2}$ or 0.5	Condone $\pm \frac{1}{2}$ but not $-\frac{1}{2}$ on its own
----------------------	---

Additional Guidance	
Condone decimals throughout	
$\sqrt{1}$	
An answer of $\overline{2}$ is M1 M1 A0	

Q8.

	Answer	Mark	Comments
(a)	$f(x) \ge -7 \text{ or } -7 \le f(x)$	B1	

Additional Guidance	
f(x) may be replaced by y or f or fx or g(x) or g or gx or $x^2 - 7$	
$x \ge -7$	B0
≥ - 7	B0
Condone $-7 \le f(x) \le \infty$ or $-7 \le f(x) \le \infty$ or $-7 \le f(x) \le \infty$ or $-7 \le f(x) \le 0$	B1
[−7, ∞) or [−7, ∞]	B0

(b)	$-11 \le g(x) \le 13$	B2	B1 $g(x) \ge -11$ or $g(x) \le 13$ on their own
	or $13 \ge g(x) \ge -11$		or embedded within an inequality
			or
			-11 < g(x) < 13
			or [-11, 13]
			or $-11 \le x \le 13$

Additional Guidance		
g(x) may be replaced by y or g or gx or f(x) or f or fx or $1 - 3x$		
in B2 or B1 responses		
$g(x) \ge -11 g(x) \le 13$	B1	

-11 to 13 inclusive ('inclusive' must be seen)	
Do not allow if 24 also seen	
B1 may be seen with an incorrect inequality	
eg1 $-11 < g(x) \le 13$	B1
eg2 $-11 \le g(x) < 13$	B1
eg3 $0 < g(x) \le 13$	B1
eg4 $13 \le g(x) \ge -11$	B1
[-11, 13) or (-11, 13] or (-11, 13)	
$-11 < x \le 13$ or $-11 \le x < 13$ or $-11 < x < 13$	
{-11, -10, -9, 0, 1, 2, 3,, 12, 13}	

(c)	2 <i>x</i> ² - 14	M1	
	$2x^2 + 3x - 15 (= 0)$	A1	
	or -2x ² - 3x + 15 (= 0)		
	or $2x^2 + 3x = 15$		
	or $-2x^2 - 3x = -15$		
	$\frac{-3\pm\sqrt{3^2-4\times2\times-15}}{2\times2}$	M1	oe $eg - \frac{3}{4} \pm \sqrt{\frac{15}{2} + \left(\frac{3}{4}\right)^2}$
	or $\frac{-3 \pm \sqrt{9 + 120}}{4}$		correct method to solve their 3- term quadratic
	or $\frac{-3\pm\sqrt{129}}{4}$		implied by correct solutions to their 3-term quadratic to at least 2 dp
	2.089 -3.589	A1ft	correct or ft M1A0M1 or M0A0M1
			must both be rounded to 3 decimal places

Additional Guidance	
2nd M1 Allow correct factorisation of their 3- term quadratic if it does factorise	
2nd M1 Allow correct use of formula even if discriminant is negative	
Two 'correct' solutions to at least 2 decimal places implies M1A1M1	M1A1 M1A0

Γ	
eg 2.09 and −3.59	
2.089 and −3.589 in working but only one on answer line	M1A1
	M1A0
Answers only 2.089 -3.589	M1A1
	M1A1
Answer only 2.089	Zero
Answer only −3.589	Zero
$2x^2 - 7$ from incorrect expansion leading to	M0A0
1.386 -2.886	M1A1ft
x^2 – 14 from incorrect expansion leading to	M0A0
2.653 -5.653	M1A1ft
$2x^2 - 14$ and $2x^2 + 3x - 13$ (= 0)	M1A0
Answers 1.908 –3.408	M1A1ft

Q9.

Answer	Mark	Comments
$1 \le g(x) \le 5$	B2	B1 1 ≤ g(x) < 5 or 1 < g(x) ≤ 5
or		or 1 < g(<i>x</i>) < 5
$5 \ge g(x) \ge 1$		or $g(x) \ge 1$ and $g(x) \le 5$
		or
		$1 \leq g(x) \leq k$
		where k is a constant > 1
		or
		$p \le g(x) \le 5$
		where p is a constant < 5
		SC1 1 ≤ <i>x</i> ≤ 5

Additional Guidance	
Condone g(x) replaced by eg y or g or gx or f(x) or f or fx or 5 – x^2	
in B2 or B1 responses	
Equivalent inequalities may be seen eg $5 \ge g(x) > 1$	B1

Only $g(x) \ge 1$ given as the answer	B0
Only $g(x) \le 5$ given as the answer	B0
$1 \le g(x) \le 4$	B1
$1 \le g(x) < 4$	B0
$0 \le g(x) \le 5$	B1
$0 < g(x) \le 5$	B0
Invalid statements do not score	
eg1 $1 \le g(x) \ge 5$	B0
eg2 $1 \ge g(x) \le 5$	B0
eg3 $6 \le g(x) \le 5$	B0
[1, 5]	B1
[1, 5) or (1, 5] or (1, 5) or 1 – 5 or 5 – 1	
$1 \le g(x) \le 5$ in working with list of integers on answer line	
Only a list of integers	

Q10.

Answer	Mark	Comments
Alternative method 1		
$(x + 3)^2$	M1	
$(x + 3)^2 - 3^2 - a$	M1dep	oe expression or inequality
or		eg $(x + 3)^2 \ge 9 + a$
$(x + 3)^2 - 3^2 \ge a$		allow ≥ to be any inequality symbol or =
or		
$(x + 3)^2 \ge a + 3^2$		eg allow $(x + 3)^2 - 9 = a$ implies M2
$-3^2 - a \ge 0$	M1dep	oe inequality eg −9 − $a \ge 0$
or		or $-9 - a > 0$
$-3^2 - a > 0$		or <i>a</i> < -9
		implies M3
a ≤ −9 or −9 ≥ a	A1	SC1 x^2 + 6 $x - a \ge 0$ oe inequality

|--|

Alternative method 2		
2x + 6 = 0	M1	must have = 0
(minimum at) $x = -3$	M1dep	implies M2
		x = -3 must be the only value or be clearly chosen
$(-3)^2 + 6 \times (-3) - a \ge 0$	M1dep	oe inequality eg 9 − 18 − $a \ge 0$
or		or 9 – 18 – <i>a</i> > 0
$(-3)^2 + 6 \times (-3) - a > 0$		or <i>a</i> < -9
		implies M3
a ≤ −9 or −9 ≥ a	A1	SC1 x^2 + 6 x - $a \ge 0$ oe inequality
		(may be seen in working lines)

Alternative method 3		
6² − 4 × 1 × −a	M1	b2 – 4 <i>ac</i>
		must be selected if seen in quadratic formula
6² – 4 × 1 × −a ≤ 0	M1dep	oe inequality
or		implies M2
6² − 4 × 1 × −a < 0		
$36 + 4a \le 0$	M1dep	oe inequality eg 4 a ≤ −36
or		implies M3
36 + 4 <i>a</i> < 0		
a ≤ −9 or −9 ≥ a	A1	SC1 x^2 + 6 x – $a \ge 0$ oe inequality
		(may be seen in working lines)

Additional Guidance			
Alt 1			
2nd M1 Any inequality symbol or = allowed			
3rd M1 Only the inequality symbols shown are allowed (do not allow =)			
Allow $(x + 3)(x + 3)$ for $(x + 3)^2$			

Q11.	S.		Ι.
------	----	--	----

Answer	Mark	Comments
$\frac{9}{2} \times \frac{1}{3}$ or $\frac{3}{2}$ or $\frac{2}{9x}$	M1	oe
$\frac{2}{3}$	A1	
their $\frac{2}{3} = \sqrt{1 - p \times \left(\frac{1}{3}\right)^3}$	M1dep	oe
$\left(\operatorname{their} \frac{2}{3}\right)^2 = 1 - p \times \left(\frac{1}{3}\right)^3$	M1dep	oe
15	A1	

Q12.

Answer	Mark	Comments
$f(x) \leq 25$	B2	B1 f(<i>x</i>) < 25
or		or $k \le f(x) \le 25$
$25 \ge f(x)$		or $k < f(x) \le 25$
		where k is any number < 25
		SC1 ≤ 25 or <i>x</i> ≤ 25

Additional Guidance	
Condone $f(x)$ replaced by eg y or f or fx or $F(x)$ or F or Fx or $x^3 - 2$	
in B2 or B1 responses	
Equivalent inequalities may be seen	B1
25 > f(x)	
Allow $-\infty < f(x) \le 25$	B2
Condone $-\infty \le f(x) \le 25$	B2
$-\infty < f(x) < 25 \text{ or } -\infty \le f(x) < 25$	B1
[−∞, 25] or (−∞, 25]	B1

(−∞, 25)	B0
Condone $f(x) = \le 25$	B2
Condone $f(x) = < 25$	B1
Condone $f(x) = x \le 25$	SC1
$f(x) \le 25$ in working with list of integers on answer line	B1
Only a list of integers	B0

Q13.

	Answer	Mark	Comments
(a)	3 × 4 ² + 6 or 3 × 16 + 6 or 54	M1	oe
	or $\sqrt{3x^2 + 6 - 5}$ or $\sqrt{3x^2 + 1}$		
	7	A1	

(b)	3(x-5)+6	M1	oe
	3x - 9 = 3(x - 3)	A1	

Q14.

Answer	Mark	Comments
$2x^2$ + 10 or 2(x^2 + 5)	B2	B1 k(x) = 2x or $(k(x))^2 = 4x^2$
		or $h(2x) = 4x^2 + 5$
		or (2 <i>x</i>) ² + 5

	Additional Guidance	
2	$(x^2 + 5)$ in working with answer $2x^2 + 5$	B1

Q15.

Answer	Mark	Comments
15x(x-4)	M1	oe
10x(2x-4)	M1	ое

$15x^2 - 60x = 20x^2 - 40x$		oe brackets expanded
or	M1dep	dep on M2
$5x^2 + 20x = 0$		
0 and –4	A1	

Q16.

Answer	Mark	Comments
<u>5</u> 6	B1	

Q17.

Answer	Mark	Comments
$\frac{6}{x-5}$	B1	
6 = x(x-5)	M1	oe eg $x^2 - 5x - 6 (= 0)$
		ft their $\frac{6}{x-5} = x$ with fractions eliminated
(x + 1)(x - 6)	M1	oe
or		correct factorisation or correct formula for their 3-term quadratic
$\frac{5\pm\sqrt{(-5)^2-4\times1\times-6}}{2\times1}$		
or		
$\frac{5}{2} \pm \sqrt{\frac{49}{4}}$		
–1 and 6	A1	

Additional Guidance		
$\frac{6}{x} - 5 = x$	B0	
$6 - 5x = x^2$	M1	
$x^2 + 5x - 6 = 0$		

(x + 6)(x - 1)	M1
–6 and 1	A0

Q18.

Answer	Mark	Comments
∛ <i>x</i> or ∛–8	M1	oe eg [∛] √
-6	A1	

Q19.

Answer	Mark	Comments
<i>x</i> ⁴	B1	

Q20.

Answer	Mark	Comments
Alternative method 1		
x = 2h(x) - 3 or $x = 2y - 3$	M1	ое
2 <i>x</i> – 3	A1	
Alternative method 2		
$x = \frac{3 + h^{-1}(x)}{2}$ or $x = \frac{3 + y}{2}$	M1	ое
2 <i>x</i> – 3	A1	

Additional Guidance	
Answer left as $y = 2x - 3$	M1A0

Section 2.6

Mark schemes

Q1.

Answer	Mark	Comments
$15x^2 - 12x + 5ax - 4a$	M1	oe
or $5ax - 12x = -2x$		
or $5a - 12 = -2$		
or $b = -4a$		
(<i>a</i> =) 2	A1	
$(b =) -4 \times \text{their } a$	A1ft	-8, but do not award -8 unless it comes from $a = 2$

Additional Guidance	
Candidates who use substitutions for x are likely to use $x = 0$ and gain M1. Award M1 for any number substituted in correctly to gain an equation in a and b	

Q2.

Answer	Mark	Comments
$3w^2 + 2wy - 12wy - 8y^2$	M1	oe
		4 terms with 3 correct
		Terms may be seen in a grid
		May be implied
		eg1 $3w^2 - 10wy + 8y^2$
		eg2 $w^2 - 10wy - 8y^2$
$3w^2 + 2wy - 12wy - 8y^2$	A1	Fully correct
		Do not allow if only seen in a grid
$3w^2 - 10wy - 8y^2$	A1ft	ft M1 A0

Additional Guidance		
Accept yw for wy throughout		
A correct term must include a – sign if it is negative		
$3w^2 + 2wy - 12wy - 8y$	M1 A0	
3 <i>w</i> ² - 10 <i>wy</i> - 8 <i>y</i>	A1ft	

$3w^2 + 2wy + 12wy - 8y^2$	
$3w^2 + 14wy - 8y$ (does not ft from previous line)	A0ft
$3w - 10wy - 8y^2$ (implied M1 and A1ft as terms collected)	
$3w^2 + 2wy - 12wy - 8wy$	M1 A0 A1ft
3 <i>w</i> ² – 18 <i>w</i> y	
$3w^2 + 10wy - 8y^2$	M0 A0 A0ft
Penalise the 2nd A1 if further work seen	M1 A1
$3w^2 - 10wy - 8y^2 = 3w^2 - 18wy^2$	A0ft

Q3.

Answer	Mark	Comments
$2y^3 - 10y^2 + 4y - 3y^2 + 15y - 6$	M1	Must have at least five terms with at least four correct
$2y^3 - 10y^2 + 4y - 3y^2 + 15y - 6$	A1	
$2y^3 - 13y^2 + 19y - 6$	A1ft	ft from M1 A0

Q4.

Answer	Mark	Comments
$\frac{3x}{3x^2}$ or $\frac{9x^2}{x^2}$ or $(-)\frac{3}{x^2}$	M1	oe eg1 $\frac{3 \times x}{x^2 \times 3}$ eg2 9 One correct product, unsimplified or simplified

$\frac{3x}{3x^2} + \frac{9x^2}{x^2} - \frac{3}{x^2} \text{or}$ $\frac{1}{x} + \frac{9x^2}{x^2} - 3x^{-2} \text{or}$ $\frac{3x + 27x^2}{3x^2} - \frac{3}{x^2} \text{or}$ $\frac{x}{x^2} + \frac{9x^2 - 3}{x^2} \text{or}$ $\frac{9x^2}{x^2} + \frac{3(x - 3)}{3x^2} \text{or}$	A1	oe Fully correct expansion of given expression that requires further simplification Multiplication signs not allowed unless recovered $\frac{3 \times x}{x^2 \times 3} + \frac{9x^2}{x^2} - \frac{3}{x^2} \text{ M1 A0}$
$\frac{3x+27x^2-9}{3x^2}$		
$\frac{1}{x} + 9 - \frac{3}{x^2} \text{or}$ $x^{-1} + 9 - 3x^{-2} \text{or}$ $\frac{1}{x} + \frac{9x^2 - 3}{x^2} \text{or}$ $x^{-1} + \frac{9x^2 - 3}{x^2} \text{or}$ $\frac{x - 3}{x^2} + 9 \text{or}$ $\frac{1 + 9x}{x} - \frac{3}{x^2} \text{or}$ $\frac{x + 9x^2 - 3}{x^2}$	A1	oe Any of these answers implies M1 A1 A1 Do not allow $\frac{9}{1}$ for 9 Multiplication signs or brackets that require expansion not allowed unless recovered After M1 A1 A1 penalise further work $\frac{x+9x^2-3}{x^2}$ followed by $\frac{3x+27x^2-9}{3x^2}$ M1 A1 A0

Additional Guidance

3 mark responses with fractions must have fractions in their simplest form

Q5.

Answer	Mark	Comments
Alternative method 1		
$2x^2 - 4ax + 2a^2 (+ 3)$	M1	or $2(x^2 - 2ax + a^2)$ (+ 3) allow one error

$2a^2 + 3 = 7a \text{ or } 2a^2 - 7a + 3 = 0$	M1	oe for equating constant terms
(2a - 1)(a - 3) (= 0)	A1	
$a = \frac{1}{2}$ and $a = 3$	A1	
-2bx = -4ax or $2b = 4a$	M1	oe
or $b = 2a$		for equating x terms
$b = 1$ when $a = \frac{1}{2}$	A1ft	ft their <i>a</i> values
and		
<i>b</i> = 6 when <i>a</i> = 3		
Alternative method 2		
when $x = 0$ $7a = 2a^2 + 3$	M1	oe
or $2a^2 - 7a + 3 = 0$		
(2a - 1)(a - 3) (= 0)	A1	
$a = \frac{1}{2}$ and $a = 3$	A1	
when $x = 1$	M1	oe
$2 - 2b + 7a = 2(1 - a)^2 + 3$		
or $2b = 7a - 1 - 2(1 - a)^2$		
substituting $a = \frac{1}{2}$ and $a = 3$ in the expression for 2 <i>b</i> (or <i>b</i>)	M1	
$b = 1$ when $a = \frac{1}{2}$	A1ft	ft their <i>a</i> values
and		
<i>b</i> = 6 when <i>a</i> = 3		

Alternative method 3		
when $x = 0$ $7a = 2a^2 + 3$	M1	ое
or $2a^2 - 7a + 3 = 0$		
(2a - 1)(a - 3) (= 0)	A1	
$a = \frac{1}{2}$ and $a = 3$	A1	

Correctly substitute a second value of x into the identity	M1	eg if $x = 2$, 8 - 4b + 7a = 2(2 - $a)^2$ + 3
Correctly substitute a third value of <i>x</i> into the identity	M1	eg if $x = 3$, $18 - 6b + 7a = 2(3 - a)^2 + 3$
$b = 1$ when $a = \frac{1}{2}$	A1ft	ft their a values
and		
<i>b</i> = 6 when <i>a</i> = 3		
Alternative method 4		
$2[(x - b/2)^2 - b^2/4 + 7a/2]$ or	M1	
$2(x - b/2)^2 - b^2/2 + 7a$		
$a = b/2$ or $3 = -b^2/2 + 7a$	M1	
$2a^2 - 7a + 3 = 0$ or	M1	oe
$b^2 - 7b + 6 = 0$		
(2 <i>a</i> – 1)(<i>a</i> – 3) (= 0) or	A1	
(<i>b</i> – 1)(<i>b</i> – 6) (= 0)		
$a = \frac{1}{2}$ and $a = 3$ or	A1	
b = 1 and $b = 6$		
$b = 1$ when $a = \frac{1}{2}$	A1ft	ft from the values they calculate first
and		
<i>b</i> = 6 when <i>a</i> = 3		

Q6.

Answer	Mark	Comments
Alternative method 1		
<i>a</i> = -5	B1	
<i>b</i> = 25 – <i>a</i>	M1	
or <i>x</i> ² – 10 <i>x</i> + 25 seen		
or <i>x</i> ² – 5 <i>x</i> – 5 <i>x</i> + 25 seen		
<i>b</i> = 30	A1ft	ft using $b = 25 - a$ if M1 earned

Alternative method 2		
<i>a</i> = -5	B1	
$(x + a)^2 - a^2 (+b)$	M1	
or $b - a^2 = -a$		
or $b = a^2 - a$		
<i>b</i> = 30	A1ft	ft using b = their ($a^2 - a$)

Alternative method 3		
<i>a</i> = -5	B1	
Substituting one value of x into the identity, correctly, to give an equation connecting a and b	A1	eg $x = 0, a + b = 25$ $x = 1, 3a + b = 15$ x = 2, 5a + b = 5 $x = 3, 7a + b = -5$
<i>b</i> = 30	A1	

Alternative method 4		
Substituting two values of <i>x</i> into the identity, correctly, to give two simultaneous equations	M1	eg $x = 0, a + b = 25$ $x = 1, 3a + b = 15$ x = 2, 5a + b = 5 $x = 3, 7a + b = -5$
<i>a</i> = -5	A1	
<i>b</i> = 30	A1	

Q7.

Answer	Mark	Comments
Sight of ab^2 or cb^2 or ad^2 or or cd^2	M1	
or (3 <i>x</i>)(<i>x</i>)(<i>x</i>)		
Two or three correct coefficients	A1	which may be embedded
a = 3, b = 1, c = 2, d = 7	A1	which may be embedded
		SC2 for (3 <i>x</i> – 2)(<i>x</i> ² – 49)

|--|

Q8.

Answer	Mark	Comments
$(x^3 +) 4x^2 - kx^2 - 4kx - 5x (-20)$	M1	or 4 – k and –4 k – 5 seen as coefficients
4 - k = 2(-4k - 5)	M1dep	ft their expansion if first M mark earned
(<i>k</i> =) −2	A1	

Additional Guidance

Condone one sign error in the first two steps

Ignore errors in x^3 and -20 for the first M1

Q9.

Answer	Mark	Comments
$4x^2$ or $3px^2$ or $4 + 3p$	M1	May be seen in an expansion or a grid
		Allow unsimplified eg $3x \times px$
their $4(x^2)$ + their $3p(x^2) = -$	M1dep	Correct or ft their expansion
23(<i>x</i> ²)		ft is equating their terms in x^2 to $-23x^2$
		Must be at least two terms with at least one linear term in p
		Allow unsimplified
		eg $3x \times px + 4x^2 = -23x^2$
-9	A1	

Additional Guidance		
In this question, only consider terms in x^2		
If only one term in x^2 the maximum mark is M1		
4 + 3p = -23 followed by $7p = -23$	M1 M1 A0	

Answer	Mark	Comments
Alternative method 1 expan	ds (x + 2)	(<i>x</i> + 3) first
$x^2 + 3x + 2x + 6$ or $x^2 + 5x + 6$	M1	oe
		must have a term in x^2
		allow one error but no omissions or extras
		implied by $x^2 + 5x + k$ or $ax^2 + 5x + 6$
$x^3 + 5x^2 + 6x + 4x^2 + 20x + 24$	M1dep	oe eg
		$x^{3} + 3x^{2} + 2x^{2} + 6x + 4x^{2} + 12x + 8x + 24$ allow one further error but no omissions or extras
$x^3 + 9x^2 + 26x + 24$	A1	

Alternative method 2 expands $(x + 3)(x + 4)$ first		
$x^{2} + 3x + 4x + 12$ or $x^{2} + 7x + 12$	M1	ое
12		must have a term in x^2
		allow one error but no omissions or extras
		implied by $x^2 + 7x + k$ or $ax^2 + 7x + 12$
$x^3 + 7x^2 + 12x + 2x^2 + 14x +$	M1dep	oe eg
24		$x^3 + 3x^2 + 4x^2 + 12x + 2x^2 + 6x +$
		8 <i>x</i> + 24
		allow one further error but no omissions or extras
$x^3 + 9x^2 + 26x + 24$	A1	

Alternative method 3 expands $(x + 2)(x + 4)$ first		
$x^2 + 4x + 2x + 8 \text{ or } x^2 + 6x + 8$ M1		oe
		must have a term in x^2
		allow one error but no omissions

		or extras implied by $x^2 + 6x + k$ or $ax^2 + 6x + 8$
$x^3 + 6x^2 + 8x + 3x^2 + 18x + 24$	M1dep	oe eg $x^3 + 4x^2 + 2x^2 + 8x + 3x^2 + 12x + 6x + 24$ allow one further error but no omissions or extras
$x^3 + 9x^2 + 26x + 24$	A1	

Additional Guidance		
For M marks terms may be seen in a grid (+ signs not needed)		
Correct answer followed by further work	M2A0	
Ignore further simplification after 4 terms seen		
eg Alt 1 $x^2 + 3x + 2x + 6 = x^2 + 6x + 6$	M1	
$(x^2 + 6x + 6)(x + 4) \rightarrow x^3 + 4x^2 + 6x^2 + 24x + 6x + 18$ (error)	M1depA0	
Second M1		
Must be the product of a two term bracket and a three or four term bracket		
Missing brackets may be recovered		

Q11.

Answer	Mark	Comments		
Alternative method 1	Alternative method 1			
2(2-5x) + 3(3x-1)	M1			
or 4 – 10 <i>x</i> or 9 <i>x</i> – 3				
4 - 10x + 9x - 3 = 1 - x	M1dep			
$(1 - x)^2 = 1 - 2x + x^2$	A1	must see working for M2		
$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1			

Alternative method 2		
$4(2-5x)^2+6(2-5x)(3x-1)$	M1	oe

+ $6(2 - 5x)(3x - 1) + 9(3x - 1)^2$		allow + $12(2 - 5x)(3x - 1)$ for + $6(2 - 5x)(3x - 1) + 6(2 - 5x)(3x - 1)$
$4(4 - 10x - 10x + 25x^{2}) + 6(6x - 2 - 15x^{2} + 5x) + 6(6x - 2 - 15x^{2} + 5x) + 9(9x^{2} - 3x - 3x + 1) = 16 - 40x - 40x + 100x^{2} + 36x - 12 - 90x^{2} + 30x + 36x - 12 - 90x^{2} + 30x + 81x^{2} - 27x - 27x + 9$	M1dep	oe must see expansions must see working for 1st M1 allow + $12(6x - 2 - 15x^2 + 5x)$ for + $6(6x - 2 - 15x^2 + 5x)$ + $6(6x - 2 - 15x^2 + 5x)$
$1 - 2x + x^2$	A1	must see working for M2
$2 - 5x + 3x - 1 + x2 = 1 - 2x + x^2$	B1	

Alternative method 3		
2(2-5x) + 3(3x-1)	M1	ое
or $4 - 10x$ or $9x - 3$		
$(4 - 10x + 9x - 3)^2$	M1dep	oe
$= 16 - 40x + 36x - 12 - 40x + 100x^{2}$		must see expansions
$-90x^2 + 30x + 36x - 90x^2 + 81x^2$		
-27x - 12 + 30x - 27x + 9		
$1 - 2x + x^2$	A1	must see working for M2
$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1	

Additional Guidance		
Allow working down both sides of an equation/identity		
M2A1 is for working on $(2A + 3B)^2$		
B1 is for working on $A + B + C$		

1 – 2x + x^2 with working for M2 seen and 2 – 5x + 3x – 1 + x^2 = $x^2 - 2x + 1$		
	$1 - x^2 = 1 - 2x + x^2$ (do not allow missing brackets even if recovered)	

Q12.

Answer	Mark	Comments			
Alternative method 1	Alternative method 1				
px - p + 6x + 2k = 4x + 8	M1	oe			
or $px + 6x = 4x$					
or <i>p</i> + 6 = 4					
<i>p</i> = -2	A1	This could imply first M mark if not seen			
2k - their p = 8 or $2k$ = their p + 8	M1	oe could be awarded by substituting a value of x with $p = -2$			
<i>k</i> = 3	A1ft	need to check back for ft mark			

Alternative method 2			
A correct equation obtained by substituting a value for x in the identity	M1	eg $x = 0$ $2k - p = 8$ x = 1 $p - p + 6 + 2k = 12x = 2$ $2p - p + 12 + 2k =16$	
A second correct equation obtained by substituting a value for x in the identity	M1	oe could go back to equating coefficients at this stage	
<i>p</i> = -2	A1		
<i>k</i> = 3	A1	may come from one equation by substituting $x = 1$	

Additional Guidance	
Correct expansion, then $p + 6 = 4$ followed by $p = 2$ (incorrect) would give $k = 5$ on ft allow ft mark for k	M1, A0 M1, A1ft
In Alt 2 substituting $x = 1$ leads to $k = 3$ (a second equation	M1, A1

Q13.

Answer	Mark	Comments
$n^{3} + 2n^{2} + 2n^{2} + 4n + 2n^{2} + 4n + 4n + 8$ or $n^{3} + 4n^{2} + 2n^{2} + 4n + 8n + 8$ or	B2	oe eg $n^3 + 3 \times 2n^2 + 3 \times 2^2n + 8$ B1 $n^2 + 2n + 2n + 4$ or $n^2 + 4n + 4$
$n^3 + 6n^2 + 12n + 8$		
their n^3 + $6n^2$ + $12n$ + 8 $-n^3$ + $5n^2$	M1	
$11n^2 + 12n + 8$	A1	

Additional Guidance	
$n^3 + 8 - n^3 + 5n^2$	B0M1A0

Q14.

Answer	Mark	Comments
x^2 + 3 x + x + 3 with three terms correct	M1	oe expansion attempt of one pair of brackets
or $x^2 + 4x + k$ where k is a non-zero constant		eg1 x^2 + 4 x + 3 x + 12 with three terms correct or x^2 + 7 x + k where k is a non-
		zero constant eg2 $x^2 + 4x + x + 4$ with three
		terms correct or
		x^2 + 5 x + k where k is a non-zero constant
$x^3 + 3x^2 + x^2 + 3x$	M1dep	attempt at a full expansion with correct multiplication of their 3 or
or $x^3 + 4x^2 + 3x$		4 terms by one of the terms in

or $4x^2 + 12x + 4x + 12$		the remaining bracket
or $4x^2 + 16x + 12$		oe eg
		$x^3 + 4x^2 + 3x^2 + 12x$ or $x^3 + 7x^2 + 12x$
		or $x^2 + 4x + 3x + 12$ or $x^2 + 7x + 12$
		$(x^2 + 7x + 12 \text{ must be from an})$ attempt at a full expansion)
		or
		$x^3 + 4x^2 + x^2 + 4x$ or $x^3 + 5x^2 + 4x$
		or $3x^2 + 12x + 3x + 12$
		or $3x^2 + 15x + 12$
$x^3 + 8x^2 + 19x + 12$	A1	fully correct expansion
		allow if terms not collected
		eg
		$x^{3} + 3x^{2} + x^{2} + 3x + 4x^{2} + 12x + 4x + 12$
		or $x^3 + 4x^2 + 3x + 4x^2 + 16x + 12$
$x^2 + 8x + 12$	A1ft	ft M2A0
		full simplification of
		their $(x^3 + 8x^2 + 19x + 12) - x^3 - 7x^2 - 11x$
		their (x^3 + 8 x^2 + 19 x + 12) must be a cubic
$x^2 + 8x + 12$	A1	oe product of brackets
and		
(x + 6)(x + 2) or $(x + 2)(x + 6)$		

Additional Guidance	
1st M1 Do not allow omissions or extras	
eg1 x^2 + 3 x + 3	MO
eg2 x^2 + 3 x + x + 3 + x^2	MO

For the first 2 marks terms may be seen in a grid	
If 1st A1 has been awarded with terms not collected, A1ft can still be awarded using their simplified cubic	M1M1A1
eq $x^3 + 4x^2 + 3x + 4x^2 + 16x + 12$	A1ftA0
$= x^3 + 8x^2 + 18x + 12$	
$x^3 + 8x^2 + 18x + 12 - x^3 - 7x^2 - 11x$	
$= x^2 + 7x + 12$	
First A1 may be seen embedded	M1, M1,
eg x^3 + 8 x^2 + 19 x + 12 - x^3 + 7 x^2 - 11 x	A1
If an attempt at the expansion of all three brackets in one go is made it must be fully correct to gain M2A1, otherwise M0M0A0	M0, M0, A0
eg x^2 + 3x + x + 3 + x^2 + 4x	
Allow recovery of missing brackets when subtracting $x^3 + 7x^2$ + 11x from their cubic	
For final A1 allow $x^2 + 8x + 12$ and $a = 6 b = 2$	
or $x^2 + 8x + 12$ and $a = 2b = 6$	
Ignore equating to zero and/or any 'solving' of an equation	

Q15.

Answer	Mark	Comments
Alternative method 1		
$3(x^2 + ax + ax + a^2) \dots$	M1	oe eg $3x^2$ + $6ax$ + $3a^2$
or $3(x^2 + 2ax + a^2) \dots$		or $\frac{b}{3} = a$
or $3\left(x+\frac{b}{3}\right)^2$ or $2b = 6a$		or 3 or $b + 2 = -3 \left(\frac{b}{3}\right)^2 + 8a$
or $8a = 3a^2 + b + 2$		
2 <i>b</i> = 6 <i>a</i>	M1dep	oe equations
and $8a = 3a^2 + b + 2$		eg $\frac{b}{3} = a$ and $b + 2 = -3$ $\left(\frac{b}{3}\right)^2 + 8a$

$3a^2 + 3a - 8a + 2 (= 0)$	M1dep	oe quadratic equation in a
or $3a^2 - 5a + 2 (= 0)$		
(3a - 2)(a - 1)	M1	oe eg $\frac{5}{6} \pm \sqrt{\frac{25}{36} - \frac{2}{3}}$
or $\frac{5\pm\sqrt{(-5)^2-4\times3\times2}}{}$		0 100 0
or $\frac{2\times 3}{2\times 3}$		ft their 3-term quadratic
$a = \frac{2}{3}$ and $a = 1$	A1	
or		
$a = \frac{2}{3}$ and $b = 2$		
or		
a = 1 and $b = 3$		
2	A1	
a = 3 and $b = 2$		
and		
a = 1 and b = 3		

Alternative method 2		
$3(x^2 + ax + ax + a^2) \dots$	M1	oe eg $3x^2$ + $6ax$ + $3a^2$
or $3(x^2 + 2ax + a^2) \dots$		or $\frac{b}{3} = a$
or $3\left(x+\frac{b}{3}\right)^2$		or $b + 2 = -3 \left(\frac{b}{3}\right)^2 + 8a$
or $2b = 6a$		
or $8a = 3a^2 + b + 2$		
2b = 6a	M1dep	oe equations
and $8a = 3a^2 + b + 2$		eg $\frac{b}{3} = a$ ($\frac{b}{3}$) ² + 8a
$\frac{8b}{3} = 3\left(\frac{b}{3}\right)^2 + b + 2$	M1dep	oe quadratic equation in b
or $b^2 - 5b + 6 (= 0)$		
(b-2)(b-3)	M1	oe eg $\frac{5}{2} \pm \sqrt{\frac{25}{4}} - 6$
		ft their 3-term quadratic

or $\frac{5\pm\sqrt{(-5)^2-4\times1\times6}}{2\times1}$		
b = 2 and $b = 3$	A1	
or		
$a = \frac{2}{3}$ and $b = 2$		
or		
a = 1 and $b = 3$		
$a = \frac{2}{3}$ and $b = 2$	A1	
and		
a = 1 and b = 3		

Additional Guidance		
Allow 0.6 for $\frac{2}{3}$		
Allow 0.67 for $\frac{2}{3}$ for first A1		
In quadratic formula allow 5^2 for $(-5)^2$ but use of -5^2 must be recovered		

Q16.

Answer	Mark	Comments
3 terms from	M1	may be seen in a grid
20 <i>x</i> ² –5 <i>xy</i> ² (+)12 <i>xy</i> ² –3 <i>y</i> ⁴		
$20x^2 - 5xy^2 + 12xy^2 - 3y^4$	A1	four correct terms in any order
		may be seen in a grid
		implied by correct answer
$20x^2 + 7xy^2 - 3y^4$	A1	terms may be in any order

Additional Guidance		
Terms seen in a grid must have the correct signs		
Terms must be fully processed eg do not allow $4x3y^2$ unless recovered		

xy^2 may be y^2x throughout	
$20x^2$ + $7xy^2$ – $3y^4$ followed by incorrect further work	M1A1A0

Q17.

Answer	Mark	Comments
Alternative method 1 Expan	nds (3 <i>x</i> +	4)(2 x – 3) first
$6x^2 - 9x + 8x - 12$ or $6x^2 - x - 12$	M1	oe 4 terms with at least 3 correct implied by $6x^2 - x + k$ or $px^2 - x - 12$ where k and p are non-zero constants may be seen in a grid
$30x^{3} - 45x^{2} + 40x^{2} - 60x - 12x^{2} + 18x - 16x + 24$ or $30x^{3} - 5x^{2} - 60x - 12x^{2} + 2x + 24$	M1	oe full expansion with correct multiplication of their 3 or 4 terms by $5x$ or -2 may be seen in a grid
$30x^3 - 17x^2 - 58x + 24$	A1	terms in any order

Alternative method 2 Expands $(2x - 3)(5x - 2)$ first		
$10x^2 - 4x - 15x + 6$	M1	oe
or		4 terms with at least 3 correct
$10x^2 - 19x + 6$		implied by $10x^2 - 19x + k$ or $px^2 - 19x + 6$ where k and p are non-zero constants may be seen in a grid
$30x^{3} - 12x^{2} - 45x^{2} + 18x + 40x^{2} - 16x - 60x + 24 or 30x^{3} - 57x^{2} + 18x + 40x^{2} - 76x + 24$	M1	oe full expansion with correct multiplication of their 3 or 4 terms by 3 <i>x</i> or 4 may be seen in a grid
$30x^3 - 17x^2 - 58x + 24$	A1	terms in any order

Alternative method 3 Expands $(3x + 4)(5x - 2)$ first		
$15x^2 - 6x + 20x - 8$	M1	oe
or		4 terms with at least 3 correct
$15x^2 + 14x - 8$		implied by $15x^2 + 14x + k$
		or $px^2 + 14x - 8$
		where <i>k</i> and <i>p</i> are non-zero constants
		may be seen in a grid
$30x^{3} - 12x^{2} + 40x^{2} - 16x - 45x^{2} + 18x - 60x + 24$ or $30x^{3} + 28x^{2} - 16x - 45x^{2} - 42x + 24$	M1	oe full expansion with correct multiplication of their 3 or 4 terms by $2x$ or -3 may be seen in a grid
$30x^3 - 17x^2 - 58x + 24$	A1	terms in any order

Additional Guidance		
For terms seen in a grid accept $8x$ for $+8x$ etc		
2nd M1		
A full expansion will be 8 terms if 4 terms are used in first expansion		
A full expansion will be 6 terms if 3 terms are used in first expansion		
Alt 1	MO	
$6x^2 + 9x - 8x - 12$ only 2 terms correct		
$(6x^2 + 9x - 8x - 12)(5x - 2)$		
$= 30x^3 + 45x^2 - 40x^2 - 60x - 12x^2 + 18x - 16x + 24$		
8 terms with correct multiplication of their 4 terms by $5x$		
Alt 2		
$10x^2 - 19x - 5$ implied 4 terms with 3 correct		
$= 30x^3 + 45x^2 - 40x^2 - 60x - 12x^2 + 18x - 16x + 24$		
8 terms with correct multiplication of their 4 terms by $5x$		
6 terms with correct multiplication of their 3 terms by 4		

1st M1 with a 4-term expansion followed by incorrect simplification to 3 terms can still score the 2nd M1 using their 3 terms

One single expansion is full marks or zero

Section 2.7

Mark schemes

Q1.

Answer	Mark	Comments
Alternative method 1		
Evidence of 1 5 10 10 5 1 used for all six coefficients (terms could be written incorrectly)	M1	the 1s can be ignored but 5 10 10 5 must be seen and used (don't accept it just being written in Pascal's triangle)
$(3)^5 + 5(3)^4(2x) + 10(3)^3(2x)^2 + 10(3)^2(2x)^3 + 5(3)(2x)^4 + (2x)^5$	M1dep	oe eg $(3)^5(2x)^0$ written for first term at least 4 terms correct (could already be simplified and missing brackets recovered)
$\begin{array}{r} (3)^5 + 5(3)^4(2x) + 10(3)^3(2x)^2 + \\ 10(3)^2(2x)^3 + 5 \ (3)(2x)^4 + (2x)^5 \end{array}$	M1dep	oe eg $(3)^{5}(2x)^{0}$ written for first term all correct
$243 + 810x + 1080x^2 + 720x^3 + 240x^4 + 32x^5$	A1	

Alternative method 2		
$(3+2x)^2 = 9 + 12x + 4x^2$	M1	
$(3 + 2x)^3 = 27 + 54x + 36x^2 + 8x^3$	M1dep	oe the terms may not have been collected could do $(3 + 2x)^2 \times (3 + 2x)^2$. If they use this method (doesn't refer to $(3 + 2x)^3$) then award this mark for answer expanded correctly but with one numerical error. Terms must be collected
$(3 + 2x)^4 = 81 + 216x + 216x^2$ + 96x ³ + 16x ⁴	M1dep	terms must be collected could do $(3 + 2x)^2 \times (3 + 2x)^3$. If they use this method (doesn't refer to $(3 + 2x)^4$) then award this mark for answer expanded correctly but with one numerical error. Terms

		must be collected
		would imply first 2 M marks if done correctly
$243 + 810x + 1080x^2 + 720x^3 + 240x^4 + 32x^5$	A1	

Alternative method 3		
Evidence of 1 5 10 10 5 1 used for all six coefficients (could be written incorrectly)	M1	the 1s can be ignored but 5 10 10 5 must be seen and used
a⁵ + 5a⁴b + 10a³b² + 10a²b³ + 5ab⁴ + b⁵	M1dep	from using a general expansion of (<i>a</i> + <i>b</i>)⁵
$\begin{array}{r} (3)^5 + 5(3)^4(2x) + 10(3)^3(2x)^2 + \\ 10(3)^2(2x)^3 + 5(3)(2x)^4 + (2x)^5 \end{array}$	M1dep	oe all correct
$243 + 810x + 1080x^2 + 720x^3 + 240x^4 + 32x^5$	A1	

Additional Guidance		
Working could be seen as a list or a grid. This can be awarded full marks if done correctly	M3A1	
Candidates could use a combination of methods. Use whichever alt method works best (probably alt 2)		
Missing brackets must be recovered		

Q2.

Answer	Mark	Comments
15 × 2⁴ or 15 × 16 or 240	M1	oe eg $\binom{6}{4}2^4$ or $2^6 \times \frac{6 \times 5}{2} \times \left(\frac{1}{2}\right)^2$
		may include a^2 and/or x^4
		allow embedded eg ${}^{6}C_{4} a^{2}(2x)^{4}$
$240a^2 = 1500 \text{ or } a^2 = \frac{1500}{240}$ or $(\pm)\sqrt{\frac{1500}{240}}$ or $\frac{5}{2}$ or $-\frac{5}{2}$	M1dep	must evaluate $\begin{pmatrix} 6\\4 \end{pmatrix}$ oe eg 15 × 2 ⁴ a^2 = 1500 or (±) $\sqrt{\frac{1500}{15 \times 2^4}}$
		may include x^4 on both sides of

		equation
$\frac{5}{2}$ and $-\frac{5}{2}$	A1	oe eg 2.5 and –2.5
2 2 with no other values		SC2 [2.236, 2.24] and [–2.24, – 2.236]
		SC1 [2.236, 2.24] or [–2.24, – 2.236]

Additional Guidance		
The relevant term must be selected from a full expansion but the other terms can be ignored		
Allow $\begin{pmatrix} 6\\4 \end{pmatrix}$ to be $\begin{pmatrix} 6\\2 \end{pmatrix}$		
$240a^2x^4 = 1500x^4$	M1M1	
$240a^2x^4 = 1500$ recovered to (±) $\sqrt{\frac{1500}{240}}$ oe		
$240a^2x^4 = 1500 \text{ not recovered to (±)} \sqrt{\frac{1500}{240}} \text{ oe}$	M1M0	

Q3.

Answer	Mark	Comments
$15(2x)^4(a)^2$	M1	
$15 \times 16a^2 = 60 \text{ or } 240a^2 = 60$	M1dep	oe
$\sqrt{\frac{\text{their 60}}{\text{their 240}}}$ or $\frac{1}{2}$ or $-\frac{1}{2}$	M1dep	oe
$\frac{1}{2}$ and $-\frac{1}{2}$	A1	oe

Q4.

Answer	Mark	Comments
$6 \times 3^2 \times (ax)^2$ or $54a^2x^2$	M1	oe
or		
$6 \times 3^2 \times a^2$ or $54a^2$		

$a^2 = \frac{150}{54}$ or $a^2 = \frac{25}{9}$		oe
or $\sqrt{\frac{150}{54}}$ or $\sqrt{\frac{25}{9}}$	M1	
or		
$\frac{5}{3}$ or $-\frac{5}{3}$		
$\frac{5}{3}$ and $-\frac{5}{3}$	A1	oe values eg $\pm \frac{5}{3}$

Section 2.8 Mark schemes

Q1.

Answer	Mark	Comments
(x + y)[(x + y) + (2x + 5y)]	M1	
(x+y)(3x+6y)	A1	
3(x + y)(x + 2y)	A1	(x + y)(x + 2y) scores SC2

Alternative method		
$x^{2} + xy + xy + y^{2} + 2x^{2} + 2xy + 5xy + 5y^{2}$	M1	Condone two errors
or		
$3x^2 + 9xy + 6y^2$		
(x+y)(3x+6y) or	A1	
(3x + 3y)(x + 2y) or		
$3(x^2 + 3xy + 2y^2)$		
3(x+y)(x+2y)	A1	(x + y)(x + 2y) scores SC2

	Answer	Mark	Comments
(a)	5(m + 2p)(m - 2p)	B3	B2 (5 <i>m</i> + 10 <i>p</i>)(<i>m</i> - 2 <i>p</i>) or
			(5m - 10p)(m + 2p)
			B1 5(<i>m</i> ² – 4 <i>p</i> ²) or
			$(5m + ap)(m + bp)$ where $ab = \pm 20$
(b)	Their (<i>m</i> + 2 <i>p</i>) = 0 or	M1	oe eg <i>m</i> = - 2 <i>p</i> or <i>m</i> = 2 <i>p</i>
	Their (<i>m</i> – 2 <i>p</i>)= 0		May substitute for p at this stage
	−30 and 30	A1	

Alternative method			
$5m^2 - 20 \times 15 \times 15 = 0$	M1	oe eg 5 <i>m</i> ² = 4500	
-30 and 30	A1		

Q3.

Answer	Mark	Comments
$3d(4c^2 - 3d)$	B2	B1 $d(12c^2 - 9d)$ or $3(4c^2d - 3d^2)$

Q4.

	Answer	Mark	Comments
(a)	(x + 7 + x - 3)(x + 7 - x + 3)	M1	Allow one sign error
	$(2x + 4) \times 10$	A1	ое
	$10 \times 2(x+2)$ or $20x + 40$	A1	

Alternative method			
x^2 + 7x + 7x + 49	M1	oe	
$(-) x^2 - 3x - 3x + 9$		Allow one error	
x^2 + 7x + 7x + 49	A1	oe	
$-(x^2 - 3x - 3x + 9)$		All terms correct	
$x^2 + 7x + 7x + 49$	A1	ое	

$-x^2 + 3x + 3x - 9 = 20x + 40$	

(b)	20(100 + 2) or 204 × 10	M1	11449 or 9409 seen
	2040	A1	

Q5.

Answer	Mark	Comments
Alternative method 1		
$(w + 4)^2$ as a factor	M1	Allow $(w + 4) (w + 4)$
$(w + 4)^2(w + 4 - (w + 1))$	M1dep	Allow $(w + 4) (w + 4)$ for $(w + 4)^2$
or		
$(w + 4)^2(w + 4 - w + 1)$		
or		
$(w + 4)^2(w + 4 - w - 1)$		
$3(w + 4)^2$	A1	Allow $3(w + 4) (w + 4)$

Alternative method 2		
$(w + 4)[(w + 4)^2 - (w + 4)(w + 1)]$	M1	
(w + 4)(aw + b)	M1dep	a and b both non-zero
$3(w + 4)^2$	A1	Allow $3(w + 4) (w + 4)$

Alternative method 3			
w^3 + 12 w^2 + 48 w + 64	M1	Must collect terms	
or			
$w^3 + 9w^2 + 24w + 16$			
or			
- <i>w</i> ³ - 9 <i>w</i> ² - 24 <i>w</i> - 16			
or			
$-w^3 + 9w^2 + 24w + 16$			
or			

$3w^2 + 24w + 48$		
or		
3(<i>w</i> ² + 8 <i>w</i> + 16)		
(3w + 12)(w + 4)	M1dep	Correctly factorises their three term quadratic
$3(w + 4)^2$	A1	Accept $3(w + 4) (w + 4)$

Q6.

Answer	Mark	Comments
3(x+2)(x-2)	B2	B1 for $3(x^2 - 4)$ or $(3x + 6)(x - 2)$
		or (<i>x</i> + 2)(3 <i>x</i> - 6)

Q7.

Answer	Mark	Comments
(5x + ay)(x + by)	M1	where $ab = \pm 12$ or $a + 5b = \pm 4$
$(5x \pm 6y)(x \pm 2y)$	A1	for correct <i>y</i> terms in correct brackets, but with a sign error
(5x - 6y)(x + 2y)	A1	

Q8.

Answer	Mark	Comments
$(x + 6)^3 [x + 6 + 3x + 4]$ or	M1	for sight of $(x + 6)^3$, $(x + 6)^2$ or $(x + 6)$
$(x + 6)^{2}[(x + 6)^{2} + (x + 6)(3x + 4)]$ or		taken out as a common factor
$(x + 6)[(x + 6)^3 + (x + 6)^3(3x + 4)]$		
$(x + 6)^{3}[4x + 10]$	A1	
$2(x+6)^{3}(2x+5)$	A1	

Additional Guidance

 $(x + 6)^{3}(x + 6)(3x + 4)$ implies M1

SC1 for all correct factors seen in working but never written as a product of terms

An attempt to expand brackets will be M0 unless the expansion leads to a correct solution worth 2 or 3 marks

 $(x + 6)^3 [x + 6 + 4x + 3]$ scores M1 ... ignore the error in the 2nd bracket

Q9.

Answer	Mark	Comments
3(4+5x)(4-5x)	B2	B1 Partial factorisation
or $3(-4 - 5x)(5x - 4)$		eg 3(16 − 25 <i>x</i> ²) or −3(25 <i>x</i> ² − 16)
or $-3(4+5x)(5x-4)$		or (12 +
or $-3(-4-5x)(4-5x)$		(15x)(4 - 5x) or (12 - 15x)(4 + 15x
		(12 - 15x)(4 + 5x)

Additional Guidance		
Brackets in either order for B2 or B1		
$-(75x^2 - 48)$	B0	
(-5x + 4) is equivalent to $(4 - 5x)$ etc		
Incorrect notation eg $(4 + 5x)3(4 - 5x)$	B1	
Use of surds		
eg $(\sqrt{48} + \sqrt{75}x)(\sqrt{48} - \sqrt{75}x)$ or $(4\sqrt{3} + 5\sqrt{3}x)(4\sqrt{3} - 5\sqrt{3}x)$		
Use of multiplication signs scores a maximum of B1	B1	
eg $3 \times (4 + 5x)(4 - 5x)$		
B2 answer followed by further work		
B1 answer followed by further work		
Missing brackets must be recovered eg 3 × 16 – $25x^2$		

Q10.

Answer	Mark	Comments
Correct factorised expression with a common factor	M1	eg $(y + 3) [6(y + 3)^4 + 4(y + 3)^3]$

		or $2[3(y+3)^5 + 2(y+3)^4]$ or $2(y+3)^2 [3(y+3)^3 + 2(y+3)^2]$
$2(y+3)^4 [3(y+3)+2]$	A1	
or $2(y+3)^4 (3y+9+2)$		
or $(y+3)^4 [6(y+3)+4]$		
or $(y+3)^4 (6y+18+4)$		
or $(y+3)^4 (6y+22)$		
$2(y+3)^4 (3y+11)$	A1	

Additional Guidance		
Use of multiplication signs scores a maximum of M1A1A0		
Any combination of bracket shape may be used		
Correct answer followed by further work	M1A1A0	
Incorrect notation eg $(y + 3)^4 2(3y + 11)$	M1A1A0	
$(2)(y+3)^4 (3y+11) \text{ or } (2(y+3)^4)(3y+11)$	M1A1A1	
Allow substitution eg $n = (y + 3)$ for M1A1 but must revert to $(y + 3)$ for final mark		
Missing brackets must be recovered eg $(y + 3)^4 6y + 22$ with M1 not seen	Zero	

Q11.

Answer	Mark	Comments
$6pq^2r(2q - 3r + 4)$	B2	B1 correct factorised expression with a common factor involving at least two variables
		eg <i>pq</i> (12 <i>q</i> ² <i>r</i> – 18 <i>qr</i> ² + 24 <i>qr</i>)
		or 2 <i>q²r</i> (6 <i>pq</i> – 9 <i>pr</i> + 12 <i>p</i>)
		or
		common factor $6pq^2r$ with two out of the three terms in the bracket correct
		eg 6 pq^2r (2 q – 3 r + 4 p)

Additional Guidance	
B2 answer followed by further work	B1
$6pq^2r (2q - 3r + 4)$ in working with $6qp^2r (2q - 3r + 4)$ on answer line	
B1 answer followed by further work	
$2q^2r$ (6 $pq - 9pr + 12p$) in working with $2p^2r$ (6 $pq - 9pr + 12p$) on answer line	
Use of multiplication signs scores a maximum of B1	
$qpq(12qr - 18r^2 + 24r)$	
6pqrq (2q - 3r + 4)	

Q12.

Answer	Mark	Comments
Alternative method 1		
(6x + ay)(x + by)	M1	ab = -20 or $a + 6b = 26$
(6x - 4y)(x + 5y)	A1	
2(3x - 2y)(x + 5y)	A1	oe but must have 3 correct factors

Alternative method 2		
(3x + ay)(2x + by)	M1	ab = -20 or $2a + 3b = 26$
(3x - 2y)(2x + 10y)	A1	
2(3x - 2y)(x + 5y)	A1	oe but must have 3 correct factors

Alternative method 3		
$2(3x^2 + 13xy - 10y^2)$	M1	
2(3x - 2y)(x + 5y)	A2	oe but must have 3 correct factors A1 for correct answer with signs wrong way round ie $2(3x + 2y)(x - 5y)$

Alternative method 4 using $(3x^2 + 13xy - 10y^2)$

(3x + ay)(x + by)	M1	ab = -10 or $a + 3b = 13$
(3x - 2y)(x + 5y)	A1	
2(3x - 2y)(x + 5y)	A1	oe but must have 3 correct factors

Additional Guidance	
Candidates who remove x or y , factorise correctly and then replace the letter to gain correct answer	M1, A2
Candidates who remove x or y , factorise correctly and then don't replace the letter	M0, A0
Condone further working in an attempt to solve an equation	

Q13.

Answer	Mark	Comments
$x^2y(x^2+3y^2)$		B1 correct partial factorisation
	B2	eg $x^2(x^2y + 3y^3)$ or $xy(x^3 + 3xy^2)$
		or $y(x^4 + 3xy^3)$ or $x(x^3y + 3xy^3)$

Additional Guidance	
Only common factor removed is 1	B0

Q14.

Answer	Mark	Comments
$x^4(x+3)(x-3)$	B2	B1 <i>x</i> ⁴ (<i>x</i> ² – 9)

Q15.

Answer	Mark	Comments
$(x^2 - 9)(x^2 + 9)$	M1	
or $(x + 3)(x^3 - 3x^2 + 9x - 27)$		
or $(x - 3)(x^3 + 3x^2 + 9x - 27)$		
$(x + 3)(x - 3)(x^2 + 9)$	A1	Do not award A1 if further working

Section 2.9

Mark schemes

Q1.

Answer	Mark	Comments
Alternative method 1		
common denominator (x +	M1	oe
(x-6)		allow $(x + 4)(x - 6)^2$
(numerator) $5x - 3(x + 4)$	M1	oe
		allow $5x (x - 6) - 3(x + 4)(x - 6)$
$\frac{2x-12}{(x+4)(x-6)}$	A1	$\frac{(2x-12)(x-6)}{(x+4)(x-6)^2}$
$\frac{2}{(x+4)}$	A1	

Alternative method 2		
remove common factor of $\frac{1}{(x-6)}$	M1	
and common denominator (<i>x</i> + 4)		
numerator $5x - 3(x + 4)$	M1	
$\frac{2x-12}{(x+4)(x-6)}$	A1	
$\frac{2}{(x+4)}$	A1	

Q2.

Answer	Mark	Comments
(x + 6)(x - 2)	B1	
(x + 5)(x - 5)	B1	

x(x - 5)	B1	
$\frac{\text{their } (x+6)(x-2)}{\text{their } (x+5)(x-5)} \times \frac{\frac{x+6}{x+6}}{x+6}$	M1	Must have attempted to factorise at least two of the above
$\frac{x(x-2)}{x+5}$ or $\frac{x^2-2x}{x+5}$	A1	A0 if incorrect further work seen

Q3.

Answer	Mark	Comments
(ax + b)(cx + d)	M1	Where $ac = 4$ and $bd = \pm 5$
		or ad + bc = ± 19
(4x - 1)(x + 5)	A1	
(3x - 4)(3x + 4)	B1	
their $\frac{(4x-1)(x+5)}{(3x-4)(3x+4)} \times \frac{(3x-4)}{(x+5)}$	M1	Inverting the 2nd fraction and multiplying Must have attempted to factorise both expressions (allow max one error in each)
$\frac{4x-1}{3x+4}$	A1	

Q4.

	Answer	Mark	Comments
(a)	$\frac{4(x-1)+2x}{x(x-1)}$	M1	oe eg two separate fractions Condone absence of brackets
	$\frac{4x-4+2x}{x(x-1)} (=\frac{6x-4}{x(x-1)})$	A1	only if recovered Do not condone absence of brackets even if recovered

(b)	6x - 4 = 3x(x - 1)	M1	oe eg 4(x - 1) + 2x = $3x(x - 1)$
	$3x^2 - 9x + 4 (= 0)$	A1	$-3x^2 + 9x - 4 (= 0)$
	$\frac{9\pm\sqrt{(-9)^2-4\times3\times4}}{2\times3}$	M2	Correct use of formula for their quadratic
			M1 Allow one sign error (must

$(=\frac{9\pm\sqrt{33}}{6})$		have square root and numerator all over 2 <i>a</i>)
		Allow M2 for correct factorisation of their quadratic
		M2 $(x - \frac{3}{2})^2 = \frac{9}{4} - \frac{4}{3}$ oe
		M1 $(x-\frac{3}{2})^2 - \frac{9}{4} + \frac{4}{3} = 0$ oe
2.46 and 0.543	A1	Must both be to 3 significant figures

Q5.

Answer	Mark	Comments
$\frac{4(x+3) + x - 2 \text{or}}{\frac{4(x+3)}{(x-2)(x+3)}} + \frac{x-2}{(x-2)(x+3)}$	M1	Must be correct
4x + 12 + x - 2 (= 5x + 10) or $\frac{4x + 12}{(x - 2)(x + 3)} + \frac{x - 2}{(x - 2)(x + 3)}$	A1	
5(x-2)(x+3)	M1	Must have 5 and be correct Must be in an equation and not a denominator oe eg $(5x - 10)(x + 3)$
$(5)(x^2 + 3x - 2x - 6)$	M1	5 may be missing Must be in an equation and not a denominator 4 terms including term in x^2 with 3 correct oe eg 1 $x^2 + x - 6$ eg 2 $5x^2 + 15x - 10x - 6$ (1 error)
$5x^2 = 40$	A1	oe eg $5x^2 - 40 = 0$ Must collect all terms and have an equation

Correct attempt at solution of their quadratic eg $x = \sqrt{\frac{40}{5}}$	M1dep	dep on M3 Quadratic formula must have no errors in substitution If completing square must have no errors up to $p(x - q)^2 = r$ $p(x - q)^2 - r = 0$
[2.8, 2.83] and [–2.83, –2.8]	A1ft	oe eg (+) $\sqrt{8}$ and $-\sqrt{8}$ or $\pm \sqrt{8}$ ft their quadratic equation if M4 SC7 Both solutions correct (no valid method) SC3 One solution correct (no valid method)

Q6.

Answer	Mark	Comments
$\frac{4c^5}{9d^3}$ or $\frac{4c^5d^{-3}}{9}$ or	B3	B2 Any two of these three components
$\frac{0.4c^5}{d^3}$ or $0.4c^5d^{-3}$		 numerator having c⁵ (no c in denominator)
		• denominator having d^3 (no d in numerator)
		or numerator having d^{-3} (no d in denominator)
		• number $\frac{4}{9}$ or 0.4
		B1 Any one of these three components
		 numerator having c⁵ (no c in denominator)
		 denominator having d³ (no d in numerator)
		or numerator having d^{-3} (no d in denominator)
		• number $\frac{4}{9}$ or 0.4
		or

$\frac{40c^7d^3}{90d^6c^2} \text{ or } \frac{20c^7d^3}{45d^6c^2} \text{ or } \frac{8c^7d^3}{18d^6c^2}$
or $\frac{1.3c^7d^3}{3d^6c^2}$ or $\frac{\frac{4}{3}c^7d^3}{3d^6c^2}$
SC1 $\frac{9d^3}{4c^5}$ or $\frac{2.25d^3}{c^5}$
Always award SC1 if this is their $4c^5$
final answer even if $\overline{9d^3}$ seen in working

Q7.

	Answer	Mark	Comments
a)	(c + 4)(c + 1) or $3(c + 1)$	M1	Correct factorisation
	$\frac{(c+4)(c+1)}{3(c+1)} = \frac{c+4}{3}$	A1	Must be a fraction and $\frac{c+4}{3}$ completed to $\frac{-4}{3}$
	Correctly converts to a common denominator	M1	M2 $\frac{2c}{6} + \frac{8}{6} + \frac{3}{6} - \frac{2c}{6}$
	eg 1 $\frac{2(c+4)}{6} + \frac{3-2c}{6}$		
	eg 2 $\frac{6(c+4)}{18} + \frac{3(3-2c)}{18}$		

(b)	Correctly expands their brackets (must have common denominator) $\frac{2c+8+3-2c}{6} \text{or}$ $\frac{2c+8}{6} + \frac{3-2c}{6}$	M1	Allow M1 if the working is $\frac{2c+4+3-2c}{6}$		
	$\frac{11}{6}$ or $1\frac{5}{6}$ or $1.833()$	A1	$\frac{33}{18}$ A0 $\frac{5}{3}$.5 3 A0	$\frac{8+3}{6}A0$

Alternative method		
Correctly converts to a common	M1	oe

denominator, eg $\frac{6(c^2 + 5c + 4)}{6(3c + 3)} + \frac{(3 - 2c)(3c + 3)}{6(3c + 3)}$		May also expand the denominator
Correctly expands their brackets (must have common denominator) $\frac{6c^{2} + 30c + 24 + 9c + 9 - 6c^{2} - 6c}{6(3c + 3)}$ or $\frac{6c^{2} + 30c + 24}{6(3c + 3)} + \frac{9c + 9 - 6c^{2} - 6c}{6(3c + 3)}$	M1	oe May also expand the denominator
$\frac{11}{6}$ or $1\frac{5}{6}$ or 1.833().	A1	$\frac{33}{18}$ A0 $\frac{5.5}{3}$ A0 $\frac{8+3}{6}$ A0

Q8.

B1	oe
M1	Allow one error in expansion if not showing brackets e.g. Allow $5m - 20 + m + 6$
	e.g. Allow $3m^2 \ge 0 + m + 0$
M1	Allow one error in expansion of
	numerator(s)
	their common denominator must
	be a quadratic
A1	
	M1

Q9.

Answer	Mark	Comments
$x^{2}(x^{2} - x - 2)$ or $(x - 2)(x^{3} + x^{2})$	M1	
or $(x + 1)(x^3 - 2x^2)$ or $(x^2 + x)(x^2 - 2x)$		
$x^{2}(x + 1)(x - 2)$ seen in numerator	M1	allow $x(x + 1)x(x - 2)$ or $(x + 1)x^2(x - 2)$
$(x^2 - 1)(x^2 - 4)$ seen in denominator	M1	
(x + 1)(x - 1) or $(x + 2)(x - 2)$	M1dep	dep on previous M mark
$\frac{x^2}{(x-1)(x+2)}$	A1	accept $\frac{x^2}{x^2 + x - 2}$

Additional Guidance	
any incorrect fw will lose the A mark	

Q10.

Answer	Mark	Comments
3(x-1) or $3x-3$	M1	
or 2(<i>x</i> – 2) or 2 <i>x</i> – 4		
3x - 3 and $2x - 4$ or $5x - 7$	M1	Implies M1 M1
$5(x-1)(x-2)$ or $5(x^2-2x-x)$		oe
+ 2) or $5x^2 - 15x + 10$	M1	Allow one error in four term expansion of $5(x - 1)(x - 2)$
or $(x - 1)(x - 2)$ expanded and multiplied by 5		Implied by $5(x^2 - 3x + k)$ or $5(ax^2 - 3x + 2)$
$5x^2 - 20x + 17 (= 0)$		dep on 3rd M1
		oe 3-term quadratic equation
	M1dep	eg $5x^2 - 20x = -17$
		Correctly collects terms in their expansion
$20\pm\sqrt{(-20)^2-4\times5\times17}$		oe
2×5		Correct use of quadratic formula for their 3-term quadratic eg (–

or $\frac{10 \pm \sqrt{15}}{5}$ or $(x-2)^2 - 4 = -\frac{17}{5}$	M1	20) ² can be 20 ² or correct factorisation of their 3- term quadratic or attempt to complete the square for their 3-term quadratic
or $5[(x-2)^2 - 4] = -17$		Must be correct up to form
		$(x-a)^2 + b = c \text{ or } k[(x-d)^2 + e]$ = f
1.23 and 2.77	A1	Must be 3 significant figures

Additional Guidance	
For A1, the word 'and' is not needed eg 1.23, 2.77 (with method seen)	M5 A1
Brackets may be recovered throughout	
5th M1 may be implied by solutions of their quadratic equation seen	
M0 M0 M0 M0 M1 A0 is possible if they have a 3-term quadratic equation	
Answers only	Zero

Q11.

Answer	Mark	Comments
Alternative method 1 Proces	ses the b	rackets then divides
$\frac{5x}{10} + \frac{6x}{10}$	M1	oe valid common denominator with both numerators correct $\frac{10x}{20} + \frac{12x}{20}$
1 <u>1</u> 10	A1	oe single term eg $\frac{22x}{20}$ or $1.1x$ may be implied eg by single term with roots evaluated that is equivalent to $\frac{11}{5x^2}$
$\frac{x^{6+2}}{2}$ or $\frac{x^3}{2}$	M1	may be implied

		eg by multiplication by $\frac{2}{x^3}$
their $\frac{11x}{10} \times \frac{2}{x^3}$ or $\frac{22x}{10x^3}$ or $\frac{22}{10x^2}$ or $\frac{11x}{5x^3}$ or $\frac{22}{10}x^{-2}$	M1dep	oe multiplication eg $\frac{11k}{10} \times 2x^{-3}$ $\frac{11k}{10}$ can be unprocessed dep on 2nd M1
$\frac{11}{5x^2}$ or $\frac{11}{5}x^{-2}$ or $2.2x^{-2}$	A1	allow $2\frac{1}{5}x^{-2}$ or $\frac{2.2}{x^2}$

Alternative method 2 Divides then expands the brackets			
$\frac{x^{6+2}}{2}$ or $\frac{x^3}{2}$	M1	may be implied eg by multiplication by $\frac{2}{x^3}$	
$\left(\frac{x}{2} + \frac{3x}{5}\right) \times \frac{2}{x^3}$	M1dep	oe multiplication eg $\left(\frac{x}{2} + \frac{3x}{5}\right) \times 2x^{-3}$	
$\frac{2x}{2x^3} + \frac{6x}{5x^3}$ or $\frac{1}{x^2} + \frac{6}{5x^2}$	M1dep	oe expansion of brackets	
$\frac{10x}{10x^3} + \frac{12x}{10x^3} \text{ or } \frac{5}{5x^2} + \frac{6}{5x^2}$ or $\frac{22x}{10x^3}$ or $\frac{22}{10x^2}$ or $\frac{11x}{5x^3}$ or $\frac{22}{10}x^{-2}$	M1dep	oe valid common denominator with both numerators correct eg $\frac{10x^4}{10x^6} + \frac{12x^4}{10x^6}$ or $\frac{22x^4}{10x^6}$ roots must be processed	
$\frac{11}{5x^2}$ or $\frac{11}{5}x^{-2}$ or $2.2x^{-2}$	A1	allow $2\frac{1}{5}x^{-2}$ or $\frac{2.2}{x^2}$	

Additional Guidance	
11	4 marks
Any single fraction with roots evaluated that is equivalent to $5x^2$	
Allow inclusion of \pm from the square root for up to 4 marks	
$\frac{11}{5x^2}$ in working with answer $\frac{11}{5}x^2$	4 marks

11x	M1A1
Alt 1 $\overline{10}$ subsequently squared and not recovered	MOMOAO

Q12.

Answer	Mark	Comments
Single correct fraction with terms processed	M1	eg1 $\frac{600a^5 + 1200a^4}{36a^3 + 72a^2}$ eg2 $\frac{50a^3 + 100a^2}{3a + 6}$ Only bracket allowed is $(a + 2)$ eg $\frac{50a^4(a + 2)}{3a^3 + 6a^2}$ (scores M2)
Factorises correctly using (<i>a</i> + 2)	M1	Only needs to be seen once eg1 $\frac{8a}{3a+6} \times \frac{5(a+2)}{3a^2} \div \frac{4}{15a^3}$ eg2 $\frac{8a}{3(a+2)} \times \frac{5a+10}{3a^2} \times \frac{15a^3}{4}$ Award M2 for fully correct unprocessed expression with full cancelling seen, eg $\frac{2}{3(a+2)} \times \frac{5(a+2)}{3(a+2)} \times \frac{515a^3}{4}$ or $\frac{2a}{3} \times 5 \times 5a$ oe
$\frac{50a^2}{3}$ or $16\frac{2}{3}a^2$ or $16.6a^2$	A1	

Additional Guidance			
<u>50×a×a</u> 3	M2A0		
A correct single fraction with $(a + 2)$ cancelled will be M2 eg1 $\frac{250a^2}{15}$ eg2 $\frac{50a^4}{3a^2}$	M2A0		

$\frac{8a}{3} \times \frac{5(a+2)}{3a^2} \times \frac{15a^3}{4}$	M0M1A0
3a + 6 = 3(a + 2) with no other valid working	M0M1A0
Brackets other than $(a + 2)$ may be seen $\frac{10a^2(5a + 10)}{3a + 6}$	MOAO
Correct answer followed by incorrect further work	M2A0
Allow one miscopy for up to M2A0	

Q13.

Answer	Mark	Comments
Alternative method 1		
common denominator	M1	allow $(x - 3)^2(x - 5)$ oe
(x - 3)(x - 5) oe		
numerator <i>x</i> (<i>x</i> – 5) + 6 or	M1dep	allow $x(x - 3)(x - 5) + 6(x - 3)$
$x^2 - 5x + 6$		oe
$\frac{(x-3)(x-2)}{(x-3)(x-5)}$	A1	$\frac{(x-3)^2(x-2)}{(x-3)^2(x-5)}$
(x-3)(x-5)		$(x-3)^2(x-5)$
$\frac{x-2}{x-5}$	A1	
x-5		

Alternative method 2		
$\frac{1}{(x-3)}\left(x+\frac{6}{(x-5)}\right)$	M1	
$\frac{1}{(x-3)}\left(\frac{x(x-5)+6}{(x-5)}\right)$	M1	
or $\frac{1}{(x-3)}\left(\frac{x^2-5x+6}{(x-5)}\right)$		
$\frac{(x-3)(x-2)}{(x-3)(x-5)}$	A1	
$\frac{x-2}{x-5}$	A1	

Additional Guidance

$\frac{-2}{-5}$ Further work eg answer of $\frac{-5}{-5}$ means the final A1 must not be awarded			
eg $\frac{x(x-5)}{(x-3)(x-5)} + \frac{6}{(x-3)(x-5)}$ scores M1 M1			
Either follow the LHS of the mark scheme for the first three steps			
Or follow the RHS			
do not mix expressions the numerators and denominators must match			

Q14.

Answer	Mark	Comments
Valid common denominator with at least one numerator correct	M1	eg $\frac{7x}{9x^2}$ and $\frac{a}{9x^2}$ or $\frac{7x+a}{9x^2}$ or $\frac{b}{9x^2}$ and $\frac{2 \times 9x}{9x \times 3x^2}$ or $\frac{b}{9x \times 3x^2}$ and $\frac{2 \times 9x}{9x \times 3x^2}$ numerators and denominators may be seen as products a can be numerical or algebraic b can be numerical or algebraic
Valid common denominator with both numerators correct	M1dep	$\frac{7x}{9x^2} = \frac{6}{9x^2}$ or $\frac{7 \times 3x^2}{9x \times 3x^2} = \frac{2 \times 9x}{9x \times 3x^2}$ numerators and denominators may be seen as products
$\frac{7x+6}{9x^2} \operatorname{or} \frac{7x+6}{(3x)^2}$ with no further work	A1	

Additional Guidance

$\frac{21x^2 + 18x}{27x^3} \text{ or } \frac{21x + 18}{27x^2} \text{ or } \frac{7x^2 + 6x}{9x^3}$	M2A0
$\frac{7x^{-1}+6x^{-2}}{9}$	M2A0
$7x + 6 / 9x^2$	M2A0

Q15.

Answer	Mark	Comments
Changes division to multiplication $\frac{3x+12}{x^2}$ and inverts to	M1	may be implied
(3x + 12 =) 3(x + 4)	M1	may be implied
Correct expression written as a single fraction or a product must have factor $(x + 4)$ in a numerator and denominator x + 4 or correct expression written as a single fraction or a product must have denominator x^3 or x^2 or x or 1	A1	may be implied by final A1 $eg \frac{3x(x+2)(x+4)}{x+4} \text{ or} \\ \frac{(3x^2+6x)(x+4)}{x+4} \\ \frac{(3x^2+6x)(x+4)}{x+4} \\ \frac{(3x^2+6x)(x+4)}{x+4} \\ \frac{(3x^2+6x)(x+4)}{x+4} \\ \frac{(3x^2+2)}{x^3} \\ \frac{(3x^4(x+2))}{x^3} \\ \frac{(x+2)}{x^3} \\ \frac{(x+2)}{x^2} \\ $

		or $3x \times (x + 2)$
$3x^2 + 6x$	A1	SC2 $\frac{x(x+2)(3x+12)}{x+4}$

Additional Guidance	
The list of examples in the first A1 is not exhaustive	
$3x^2$ + $6x$ with no incorrect working	4 marks

Q16.

Answer	Mark	Comments
$x(1 - x^2)$	M1	implied by 2nd M1
or $2x(1 + x)$ or $x(2 + 2x)$		oe factorisation
or $\frac{1-x^2}{2+2x}$		eg - <i>x</i> (<i>x</i> 2 - 1)
x(1 + x)(1 - x)	M1dep	implies M2
or $\frac{x(1-x^2)}{2x(1+x)}$		oe factorisation
		eg -x(x + 1)(x - 1)
or $\frac{1-x^2}{2(1+x)}$ or $\frac{(1+x)(1-x)}{2+2x}$		
$\frac{x(1+x)(1-x)}{2x(1+x)}$ or	M1dep	implies M3
2x(1+x) or $(1+x)(1-x)$		oe factorisation
$\frac{(1+x)(1-x)}{2(1+x)}$		$rac{-x(x+1)(x-1)}{2x(1+x)}$
or $\frac{x(1-x)}{2x}$		eg $2x(1+x)$
$\frac{1-x}{2}$	A1	oe simplest form
2 with M3 seen		$\frac{\text{eg}}{\frac{1}{2}(1-x)} \text{ or } \frac{1}{2} - \frac{1}{2}x \text{ or } \frac{1}{\frac{1}{2}} + \frac{1}{2}x \text{ or } \frac{1}{2} +$

Additional G	uida	nce			
x(1+x)(1-x)		(1+x)(1-x)		x(1-x)	M3
2x(1+x)	or	2(1+x)	or	2x	

is sufficient working	
$2(x + x^2)$ with no further work	MO
$\frac{x-1}{-2}$ with M3 seen or $-\frac{1}{2}(x-1)$ with M3 seen or $\frac{-(x-1)}{2}$ with M3 seen	M3 A1

Q17.

Answer	Mark	Comments
5xy(3x - y)	M1	
4(3 <i>x</i> - <i>y</i>)	M1	
$\frac{5xy}{4}$	A1	

Q18.

Answer	Mark	Comments
Both fractions written with a common denominator (could be written as a single fraction) which is a multiple of 6 <i>a</i> and 4 with at least one correct (term of the) numerator	M1	oe $eg \frac{20}{24a} \text{ or } \frac{6a^2}{24a} \text{ or } \frac{4(5)}{4(6a)}$ or $\frac{20+6a^2}{24a}$ allow decimals in fraction eg $\frac{5+1.5a^2}{6a}$
$\frac{10+3a^2}{12a}$	A1	

Additional Guidance		
Penalise further working		
10+3a ²	M1, A0	
12 is likely to come from correct working		

Q19.

Answer	Mark	Comments

(numerator =) $2x(4x^2 - 25)$ or $\frac{4x^2 - 25}{6x^2 - x - 35}$	B1	
(numerator =) $2x(2x + 5)(2x - 5)$ or $\frac{(2x+5)(2x-5)}{6x^2 - x - 35}$	B1	
(ax + b)(cx + d) where $ac = 6$ and $bd = \pm 35$	M1	
(3x+7)(2x-5)	A1	
$\frac{2x+5}{3x+7}$	A1	

Q20.

Answer	Mark	Comments
Common denominator with at least one numerator correct	M1	eg $\frac{21}{6x^2} + \frac{8x}{6x^2}$ or $\frac{21x}{6x^3} + \frac{8x^2}{6x^3}$
$\frac{21+8x}{6x^2}$	A1	

Q21.

Answer	Mark	Comments
$\frac{c^3}{6c+1}$	B3	B2 $c^{3}(6c - 1)$ and $(6c + 1)(6c - 1)$
		$B1c^{3}(6c - 1)$ or $(6c + 1)(6c - 1)$

Additional Guidance	
<i>c</i> ³	B2
$\overline{6c+1}$ followed by incorrect further work	

Q22.

Answer	Mark	Comments

2(5 $x - y$) or -2($y - 5x$) or	M1	
3(y - 5x) or $-3(5x - y)$		
$-\frac{2}{3}$	A1	

Section 2.10

Mark schemes

Q1.

Answer	Mark	Comments
$3ef = 5e + 4 \text{ or } ef - \frac{5e}{3} = \frac{4}{3}$	M1	
$e(3f-5) = 4 \text{ or}$ $e\left(f-\frac{5}{3}\right) = \frac{4}{3}$	M1dep	oe where they are one step away from answer.
$e = \frac{4}{3f - 5}$	A1	oe eg $e = \frac{\frac{4}{3}}{\left(f - \frac{5}{3}\right)}$ or $e = \frac{-4}{5 - 3f}$

Alternative method 2		
$3f = 5 + \frac{4}{e}$	M1	
$\frac{4}{e} = 3f - 5$	M1dep	oe where they are one step away from answer
$e = \frac{4}{3f - 5}$	A1	oe eg $e = \frac{\frac{4}{3}}{\left(f - \frac{5}{3}\right)}$ or $e = \frac{-4}{5 - 3f}$

Additional Guidance		
Must have $e =$ on the answer line for full marks		

Q2.

Answer	Mark	Comments
Alternative method 1		
$y^2 = \frac{x + 2w}{3}$	M1	
$3y^2 - x = 2w$	M1dep	
or		
$\frac{3y^2 - x}{2}$ or $\frac{3y^2}{2} - \frac{x}{2}$		
$w = \frac{3y^2 - x}{2}$	A1	
or		
$w = \frac{3y^2}{2} - \frac{x}{2}$		

Alternative method 2			
$y^2 = \frac{x}{3} + \frac{2w}{3}$	M1		
$y^2 - \frac{x}{3} = \frac{2w}{3}$	M1dep		
or			
$\frac{3}{2}\left(y^2 - \frac{x}{3}\right)$ or $\frac{3y^2}{2} - \frac{3x}{6}$			
$w = \frac{3}{2} \left(y^2 - \frac{x}{3} \right)$	A1		
or			
$w = \frac{3y^2}{2} - \frac{3x}{6}$			

Additional Guidance	
Condone eg $w = \frac{3y^2 - x}{2}$ seen in working with $\frac{3y^2 - x}{2}$ on answer line	M2A1
$w = \frac{3}{2}y^2 - \frac{1}{2}x$ etc	M2A1

Q3.

	Answer	Mark	Comments
(a)	5t + 3 = 4wt + 8w	M1	
	5t - 4wt = 8w - 3	M1	Separation of terms in <i>t</i> from those not in <i>t</i>
	t(5-4w) = 8w - 3	M1	Factorisation of terms in t
	$t = \frac{\frac{8w-3}{5-4w}}{1-4w}$	A1ft	oe eg $t = \frac{3-8w}{4w-5}$
			Must have t =
			Only ft if third M1 and one other M1 gained
(b)	$\frac{8 \times -\frac{1}{8} - 3}{5 - 4 \times -\frac{1}{8}}$	M1	Substitution of $w = -\frac{1}{8}$ in their $\frac{8w-3}{5-4w}$ Their $\frac{8w-3}{5-4w}$ must be in terms of w
	Numerator = -4 or denominator = $5\frac{1}{2}$	A1ft	$\frac{8w-3}{5-4w}$ ft Their $\frac{5-4w}{5-4w}$ This mark can only be gained for correct evaluation of their algebraic numerator or their algebraic denominator
	- <u>11</u> or -0.72	A1ft	$\frac{8w-3}{5-4w}$ ft Their $\frac{5-4w}{5-4w}$ This mark can only be gained for correct evaluation of their algebraic numerator and their algebraic denominator Must be an exact value in simplest form SC2 -0.72 or -0.73 or a correct evaluation of their algebraic numerator or their algebraic denominator
	$5t + 3 = -\frac{4}{8}(t + 2)$	M1	oe equation
	44 <i>t</i> = - 32	A1	oe eg 5.5 <i>t</i> = −4

$\frac{8}{-11}$ or - 0.72	A1ft	ft from their $at = b$ if M1 A0
		Must be an exact value in simplest form
		SC2 -0.72 or -0.73

Q4.

	Answer	Mark	Comments
(a)	$S\left(1-r\right)=a$	B1	$\frac{a}{S} = 1 - r$
	S - Sr = a	M1	Any valid correct step from their first step
	$S - a = Sr (\frac{S - a}{S} = r)$	A1	Clearly shown with no errors

(b)	<u>10a - a</u> 10a	$(=\frac{9a}{10a})$	M1	$10a = \frac{a}{1-r}$ oe
	9 10		A1	oe

Q5.

Answer	Mark	Comments
x(5-3w) = 2w + 1	M1	
5x - 3xw = 2w + 1	M1dep	oe eg $5x - 3xw - 2w = 1$
or		Expands brackets correctly
$5 - 3w = \frac{2w}{x} + \frac{1}{x}$		or
5 - 3w = 3x - x		divides each term by x
5x - 1 = 2w + 3xw	M1dep	oe eg -3 <i>xw</i> - 2 <i>w</i> = 1 - 5 <i>x</i>
or $5 - \frac{1}{x} = \frac{2w}{x} + 3w$		Collects terms in <i>w</i> (must have ≥ 2 terms containing <i>w</i>) Allow one sign error only dep on first M1 only
$\frac{5x-1}{2+3x} = w$	A1	oe eg $w = \frac{1-5x}{-3x-2}$

|--|

Q6.

Answer	Mark	Comments
$\frac{3xy}{x+y} = 16$	B1	allow 4 ²
3xy = 16(x + y)	M1	allow 'their 16' as obtained in first step
or $3xy = 16x + 16y$		
3xy - 16y = 16x or y(3x - 16) = $16x$	M1	ft with 'their 16'
$y = \frac{16x}{3x - 16}$	A1	oe eg $y = \frac{-16x}{16 - 3x}$

Additional Guidance

They must get 4^2 or 16 to score B1 but 'their 16' is good enough to score the two M marks. For A1 it has to say 16, 4^2 is not acceptable

... any incorrect fw will lose the A mark

Q7.

Answer	Mark	Comments
Alternative method 1		
$yx = 8(w - x) \text{ or } y = \frac{8w - 8x}{x}$	M1	
yx = 8w - 8x	M1dep	oe eg $yx - 8w + 8x = 0$ Implies M1 M1
yx + 8x = 8w or x(y + 8) = 8w or $\frac{8w}{y + 8}$	M1dep	oe dep on M1 M1 Implies M1 M1 M1
$x = \frac{8w}{y+8}$	A1	$\frac{-8w}{-y-8}$ Must have x =

<u>8w</u> <u>8w</u>	
$SC2 x = \frac{y+1}{SC1} SC1 \frac{y+1}{y+1}$	

Alternative method 2		
$y = \frac{\frac{8w}{x}}{x} - 8 \text{ or } y = \frac{\frac{8w}{x}}{\frac{8w}{x} - \frac{8x}{x}}$	M1	
$y + 8 = \frac{\frac{8w}{x}}{x}$	M1dep	oe eg $y + 8 - \frac{\frac{8w}{x}}{x} = 0$ Implies M1 M1
yx + 8x = 8w or x(y + 8) = 8w or $\frac{1}{y+8} = \frac{x}{8w} \text{ or } \frac{8w}{y+8}$	M1dep	oe dep on M1 M1 Implies M1 M1 M1
$x = \frac{8w}{y+8}$	A1	$\frac{-8w}{-y-8}$ Must have $x =$ $SC2 x = \frac{8w}{y+1} \frac{8w}{SC1} \frac{8w}{y+1}$

Alternative method 3		
yx = 8(w - x)	M1	
$\frac{yx}{8} = w - x$	M1dep	oe eg $\frac{yx}{8} - w + x = 0$ Implies M1 M1
$\frac{\frac{yx}{8}}{\frac{w}{8} + x} = w \text{ or } x(\frac{\frac{y}{8}}{8} + 1) = w$ $\frac{\frac{w}{\frac{y}{8} + 1}}{\frac{y}{8} + 1}$ or	M1dep	oe dep on M1 M1 Implies M1 M1 M1
$x = \frac{\frac{w}{\frac{y}{8} + 1}}{x = \frac{w}{8} + 1}$	A1	$\frac{-w}{-\frac{y}{8}-1}$ oe eg x = Must have x =

8w	8w
SC2 $x = \frac{y+1}{x+1}$	SC1 y+1

Additional Guidance			
8w 8w	M3 A1		
$x = \frac{y+8}{y+8}$ in working with $\frac{y+8}{y+8}$ on answer line			
<u>8w</u> 8w	SC2		
$x = \frac{y+1}{y+1}$ in working with $\frac{y+1}{y+1}$ on answer line			
3rd M1 is for collecting terms in x (or x in numerator in Alt 2)			
Allow multiplications signs and 1s throughout			
Correct answer followed by incorrect further work M3 A0			

Q8.

Answer	Mark	Comments
A correct first step using algebra	M1	Here are some of the possible alternatives
		$\frac{1}{x} = y \left(4 - \frac{3}{y} \right)$ multiplying through by y
		$1 = xy\left(4 - \frac{3}{y}\right)$ multiplying
		through by xy 1 = 4 xy - $3xy$
		y multiplying through by xy
		$y = 4xy^2 - 3xy$ multiplying through by xy^2
		$\frac{1}{xy} = \frac{4y - 3}{y}$ making the RHS an algebraic fraction
		$\frac{1+3x}{xy} = 4$ rearranging and making the LHS an algebraic fraction
Further correct algebra which	M1dep	Following two of

leads to an equation that is one step from the final answer.		the above alternatives $y = 4xy^{2} - 3xy$ $y = x(4y^{2} - 3y)$ M1dep gained $\frac{1 + 3x}{xy} = 4$ xy $1 + 3x = 4xy$ $1 = 4xy - 3x$
		1 = x(4y - 3) M1dep gained
A correct final answer in any form	A1	$x = \frac{1}{4y - 3} \qquad x = \frac{-1}{3 - 4y}$ $x = \frac{y}{4y^2 - 3y} \qquad x = \frac{-y}{3y - 4y^2}$
		$x = \frac{y}{4y^2 - 3y} x = \frac{-y}{3y - 4y^2}$
		$x = \frac{1}{y\left(4-\frac{3}{y}\right)} x = \frac{-1}{y\left(\frac{3}{y}-4\right)}$
		$x = \frac{1}{\left(4 - \frac{3}{y}\right)} \div y$

Additional Guidance

There are many ways of scoring the first M mark. They do not need to give any reasons but you need to check that what they do is valid.

For the M1dep mark you must check that their algebra is correct and will lead to a result that is one step from the final answer. 'One step from ...' means that when they divide through, they have a correct version where x is the subject.

Some of the final answers are more compact than others, but we didn't ask for any simplification so we have to accept a correct answer in any form.

... and, finally, one to look out for ... correct answer from wrong working ... 0 marks

 $\frac{1}{xy} = 4 - \frac{3}{y} \xrightarrow{xy} = \frac{1}{4} - \frac{y}{3} \xrightarrow{x} x = \frac{1}{4y} - \frac{1}{3} \xrightarrow{x} x = \frac{1}{4y - 3}$ (creative thinking !)

Answer	Mark	Comments
$t(w^3 - 2) = 3w^3 + a$	M1	
$tw^3 - 2t = 3w^3 + a$	M1dep	
$tw^3 - 3w^3 = a + 2t$	M1dep	
$w^{3}(t-3) = a + 2t$ or $w^{3} = \frac{a+2t}{t-3}$	M1dep	
$w = \sqrt[3]{\frac{a+2t}{t-3}}$	A1	

Q10.

Answer	Mark	Comments		
Alternative method 1				
3mp = 3(2p + 1) + p + 5 3(2n + 1) = n + 5	M1	oe fractions eliminated or common denominator		
or $(m =) \frac{3(2p+1)}{3p} + \frac{p+5}{3p}$ $(m =) \frac{6p+3+p+5}{3p}$		eg $(m =) \frac{3p(2p+1)}{3p^2} + \frac{p(p+5)}{3p^2}$ $(m =) \frac{6p^2 + 3p + p^2 + 5p}{3p^2}$ or		
3mp = 6p + 3 + p + 5 or $3mp = 7p + 8$	M1dep	oe brackets expanded and fractions eliminated eg $3mp^2 = 7p^2 + 8p$		
3mp - 7p = 8 or $\frac{8}{3m - 7}$ or $\frac{-8}{7 - 3m}$	M1dep	implies M2 oe terms collected eg $p(3m-7) = 8$ or $7p - 3mp = -8$ implies M3		
$p = \frac{8}{3m - 7}$ or $p = \frac{-8}{7 - 3m}$	A1	oe eg $\frac{8}{3m-7} = p$		

Alternative method 2		
3mp = 3(2p + 1) + p + 5	M1	oe common denominator

or $(m =) \frac{3(2p+1)}{3p} + \frac{p+5}{3p}$ $(m =) \frac{6p+3+p+5}{3p}$		eg $(m =) \frac{3p(2p+1)}{3p^2} + \frac{p(p+5)}{3p^2}$ $(m =) \frac{6p^2 + 3p + p^2 + 5p}{3p^2}$ or
$m = \frac{7p+8}{3p}$	M1dep	simplifies numerator and isolates term in p
and $m = \frac{7}{3} + \frac{8}{3p}$		$m = \frac{7p^2 + 8p}{3p^2}$
and $m - \frac{7}{3} = \frac{8}{3p}$		$m = \frac{7}{3} + \frac{8}{3p}$
		and $\frac{m-\frac{7}{3}=\frac{8}{3p}}{m-\frac{8}{3p}}$
		implies M2
$\frac{3m-7}{3} = \frac{8}{3p}$	M1dep	converts $\frac{m-\frac{7}{3}}{1}$ to a single fraction
		implies M3
$p = \frac{8}{3m - 7}$ or $p = \frac{-8}{7 - 3m}$	A1	oe eg $\frac{8}{3m-7} = p$

Additional Guidance			
$p = \frac{8}{3m-7}$ in working but $\frac{8}{3m-7}$ on answer line	M3, A1		
Allow recovery of missing brackets			
$p = \frac{8}{3m - 7}$ followed by incorrect further work	M3, A0		
$p = \frac{\frac{8}{3}}{\frac{3m-7}{3}}$ Allow equivalences for A1 eg 3	M3, A1		
Do not regard eg $3m(p) = 7p + 8$ as having unexpanded brackets	M1, M1dep		

Section 2.11 Mark schemes

Q1.

	Answer	Mark	Comments
(a)	Shows substitution of $x = \frac{1}{2}$	M1	eg $2 \times \left(\frac{1}{2}\right)^3 + 11 \times \left(\frac{1}{2}\right)^2 + 12 \times \frac{1}{2} - 9$ or $2 \times \frac{1}{8} + 11 \times \frac{1}{4} + 12 \times \frac{1}{2} - 9$ or $\frac{1}{4} + \frac{11}{4} + 6 - 9$
	Shows substitution of $x = \frac{1}{2}$ and evaluates to zero	A1	eg $2 \times \left(\frac{1}{2}\right)^{3} + 11 \times \left(\frac{1}{2}\right)^{2} + 12 \times \frac{1}{2} - 9$ = 0 or $2 \times \frac{1}{8} + 11 \times \frac{1}{4} + 12 \times \frac{1}{2} - 9$ = 0 or $\frac{1}{4} + \frac{11}{4} + 6 - 9$ = 0

Additional Guidance	
Allow use of 0.5 and/or absence of multiplication signs	
eg1 $2(0.5)^3 + 11(0.5)^2 + 12(0.5) - 9 = 0$	M1A1
$eg2 2\left(\frac{1}{8}\right) + 11\left(\frac{1}{4}\right) + 12\left(\frac{1}{2}\right) - 9$	M1A0
Allow working in stages	M1A1
eg $2(0.5)^3 + 11(0.5)^2 + 12(0.5) = 99 - 9 = 0$	
Condone incorrect use of =	M1A1
eg $2(0.5)^3 + 11(0.5)^2 + 12(0.5) = 9 - 9 = 0$	
$2 \times \frac{1}{2}^3$ or $2 \times \left(\frac{1}{2}^3\right)$ etc	
Ignore algebraic division or other substitution attempts	
Only stating $f\left(\frac{1}{2}\right)_{\text{or only stating }} f\left(\frac{1}{2}\right)_{=0}$	
Alt 1	MO
6x 2 + 9x - 8x - 12 only 2 terms correct	

Calculation error(s) will be A0					
eg1 $2 \times \left(\frac{1}{2}\right)^3 + 11 \times \left(\frac{1}{2}\right)^2 + 12 \times \frac{1}{2} - 9 = \frac{1}{8} + \frac{11}{4} + 6 - 9 = 0$				M1A0	
eg2 $\frac{1}{4} + \frac{11}{4} + 6 - 9 = 4 + 6 - 9 = 0$				M1A0	
May be seen as synthetic division			M1A1		
eg					
	2	11	12	-9	
0.5		1	12 6	9	
5.	2	12	18	0	
(with the bottom right entry blank award M1A0) (with an error award M0A0)					

(b) Alternative method 1

Alternative method 1		
$x^{2} + 6x \dots$ or $2 \times (-3)^{3} + 11 \times (-3)^{2} + 12 \times (-3)^{2}$ -9	M1	$x^{2} + 6x \dots$ oe eg or $(2x - 1)(x^{2} + bx + c) \text{ and } b = 6$ or $2 \times -27 + 11 \times 9 + 12 \times -3 - 9$ or $-54 + 99 - 36 - 9$
$x^{2} + 6x + 9$ or $(x + 3)(x + 3)$ or $(x + 3)^{2}$	M1dep	oe eg $\frac{x^{2} + 6x + 9}{2x - \sqrt{2}x^{3} + 1\sqrt{x^{2} + 12x - 9}}$ or $(2x - 1)(x^{2} + bx + c) \text{ and } b = 6$ and $c = 9$
$x^{2} + 6x + 9 \text{ and } (x + 3)(x + 3)$ or $x^{2} + 6x + 9 \text{ and}$ $\frac{-6\pm\sqrt{6^{2}-4\times1\times9}}{2\times1}$ or $x^{2} + 6x + 9 \text{ and } 6^{2} - 4 \times 1 \times 9$	M1dep	oe eg x^2 + 6x + 9 and $(x + 3)^2$ or x^2 + 6x + 9 and $\frac{-6}{2}$ or x^2 + 6x + 9 and $36 - 36 = 0$

= 0		or
or		$(2x-1)(x+3)^2$
(2x - 1)(x + 3)(x + 3)		
M3 and indication that there are exactly two solutions	A1	eg1 x^2 + 6 x + 9 and $(x$ + 3) $(x$ + 3)
		and 0.5 and –3
		eg2 <i>x</i> ² + 6 <i>x</i> + 9 and
		$\frac{-6\pm\sqrt{6^2-4\times1\times9}}{2}$
		2×1 and 0.5 and -3
		eg3 $(2x - 1)(x + 3)(x + 3)$
		and
		repeated bracket so exactly two solutions/roots/answers/factors

Alternative method 2		
$6x^2 + 22x + 12 = 0$	M1	condone omission of = 0
or $(6x + 4)(x + 3) = 0$		oe eg $(2x + 6)(3x + 2) = 0$
$-22\pm\sqrt{22^2-4\times6\times12}$		or $2(x + 3)(3x + 2) = 0$
or 2×6 -22±√196		or $-\frac{11}{6} \pm \sqrt{-2 + \frac{121}{36}}$
or 12		or $-\frac{11}{6} \pm \sqrt{\frac{49}{36}}$
$x = -\frac{2}{3}$ and $x = -3$	M1dep	allow [-0.67, -0.66] for $-\frac{2}{3}$
$x = -\frac{2}{3}$ and (-3, 0)	M1dep	allow [–0.67, –0.66] for $-\frac{2}{3}$
		ignore <i>y</i> -coordinate for $x = -\frac{2}{3}$ (-3, 0) may be seen on a graph
M3 and indication that there are exactly two solutions	A1	eg $x = \frac{2}{3}$ and (-3, 0) and a turning point on the <i>x</i> -axis so two solutions/roots

Alternative method 3		
Sketch of cubic graph with	M1	condone minimum turning point

maximum turning point at (–3, 0)		at (–3, 0)
Sketch of cubic graph with maximum turning point at (-3, 0)	M1dep	
and		
minimum turning point in the third quadrant		
Sketch of cubic graph with maximum turning point at (–3, 0)	M1dep	-3 and $\frac{1}{2}$ must both be correctly labelled on the <i>x</i> -axis
and		
minimum turning point in the third quadrant		
and		
intersecting the positive x- $\frac{1}{2}$ axis at $\frac{1}{2}$		
M3 and indication that there are exactly two solutions	A1	eg M3 and 0.5 and –3

Additional Guidance					
	ay be award Iswer, even				
Alt 1 Up to	the first two	marks may	be seen in	a grid	M1M1
eg					
	x ²	+6x	+9		
2x	$2x^3$	$12x^2$	18x		
-1	$-x^2$	-6x	- 9		
Condone m	• •	nbols in top	row unless	s subsequently	
Alt 1 x^2 + 6x + 9 or $(x + 3)(x + 3)$ or $(x + 3)^2$			M1M1		
Alt 1 $(2x - 1)(x + 3)(x + 3)$ or $(2x - 1)(x + 3)^2$			M1M1M1		
Alt 1 $(2x - 1)(x + 3)(x + 3)$ with solutions 0.5 and -3			M1M1M1A1		
Alt 1 2 <i>x</i> ² + 5	5x - 3 = (2x)	– 1)(<i>x</i> + 3) ().5 and –3		Zero

Alt 1 Examples of acceptable indications that there are exactly two solutions					
eg1 🤉	x = 0.5, -3,	–3 (Only) tv	wo solution	s	
eg2 🤉	x = 0.5, -3,	–3 One roo	t is a repea	at	
eg3 (2 x – 1) gives one solution (x + 3)(x + 3) gives one solution					
eg4 ((2x - 1)(x +	3)(<i>x</i> + 3) T	wo factors	(only)	
	These are the two solutions of two	•	ble indicati	ions that there are	
eg1 ((2x - 1)(x +	3)(x + 3) 3	and 0.5		
eg2 ((x + 3)(x + 3)	B) Exactly tv	vo solution	S	
	Ignore othe em for 1st l		on attempts	s if using factor	
Alt 1	Allow abse	nce of multi	plication si	gns in factor theorem	M1
eg 2((–3) ³ + 11(–	3) ² + 12(–3) – 9		
Alt 1 Condone incorrect use of =			M1		
eg $2(-3)^3 + 11(-3)^2 + 12(-3) = 9 - 9$					
Alt 1 Allow working in stages			M1		
eg $2(-3)^3 + 11(-3)^2 + 12(-3) = 99 - 9 = 0$					
Alt 1 Only stating $f(-3)$ or only stating $f(-3) = 0$			MO		
Alt 1 May be seen as synthetic division			M1		
eg					
	2	11	12	-9	
-3		-6	-15	9	
	2	5	-3	0	
Working in (a) eg algebraic division that is not used in (b) cannot score in (b)				МО	
$x^2 + 6x + 9$					
eg (a) $2x-1)2x^3+11x^2+12x-9$					
(b) Not attempted					
Working in (a) eg algebraic division that is used in (b) can score in (b)			M1M1		
eg (a	a) $(2x - 1)(x $	$x^{2} + 6x + 9$)			

Q2.

	Answer	Mark	Comments
(a)	1 ³ - 21(1) + 20 = 0 or	B1	Must have = 0
	1 - 21 + 20 = 0		
	$4^3 - 21(4) + 20 = 0$ or	B1	Must have = 0
	64 - 84 + 20 = 0		
			- -
(b)	$1^{3} - 10(1)^{2} + 29(1) - 20 = 0$ or	B1	Must have = 0
	1 - 10 + 29 - 20 = 0		B2 $(x - 1)(x - 4)(x - 5)$ and correct expansion of one pair of
	Divides $x^3 - 10x^2 + 29x - 20$ by		brackets eg $(x - 1)(x - 4)(x - 5)$
	(x - 1) and obtains answer		and
	$x^2 - 9x + 20$		$(x^2 - 5x + 4)(x - 5)$
			B1 $(x-1)(x-4)(x-5)$
	$4^3 - 10(4)^2 + 29(4) - 20 = 0$	B1	Must have = 0
	or 64 - 160 + 116 - 20 = 0 Divides <i>x</i> ³ -		B2 $(x - 1)(x - 4)(x - 5)$ and correct expansion of one pair of brackets
	$10x^2 + 29x -$		eg $(x-1)(x-4)(x-5)$
	20 by $(x - 4)$ and obtains		and
	answer x^2 – 6 x + 5		$(x^2 - 5x + 4)(x - 5)$
			B1 $(x-1)(x-4)(x-5)$
(c)	(x + 5) as 3rd factor of	B1	x + 5

(c)	(x + 5) as 3rd factor of	B1	<i>x</i> + 5
	numerator		Implied by final answer $ax + b$
	(x - 5) as 3rd factor of	B1	cx + d
	denominator		Implied by final answer $x-5$
	their $x + 5$	B1ft	Do not award if further work
	their $x - 5$		

Q3.

Answer	Mark	Comments
$2^3 + a(2)^2 + b(2) + 24$	M1	oe eg 8 + 4 <i>a</i> + 2 <i>b</i> + 24
$(-3)^3 + a(-3)^2 + b(-3) + 24$	M1	oe eg –27 + 9 <i>a</i> – 3 <i>b</i> + 24
4a + 2b = -32 and $9a - 3b = 3$	A1	oe Must be 2 correct equations
Multiplies equation(s) to have the same coefficient for one variable and	M1	Allow two errors in first stage and one error in second stage (must use the appropriate operation for elimination for their equations)
attempts to eliminate by addition or subtraction		oe eg substitution method used
eg 12 <i>a</i> + 6 <i>b</i> = –96		
18a - 6b = 6		
and		
30 <i>a</i> = - 90		
<i>a</i> = – 3 and <i>b</i> = –10	A1	

Alternative method		
(x - 4)	M1	
$x^2 - 2x + 3x - 6$ or	M1	$x^2 + x - 6$ or
$x^2 - 2x - 4x + 8$ or		$x^2 - 6x + 8$ or
$x^2 + 3x - 4x - 12$		$x^2 - x - 12$
		ft their $(x - 4)$
$x^3 + x^2 - 6x - 4x^2 - 4x + 24$ or	M1	their $(x - 4) \times$ their $(x^2 + x - 6)$ or
$x^3 - 6x^2 + 8x + 3x^2 - 18x + 24$		$(x + 3) \times \text{their} (x^2 - 6x + 8)$ or
or $x^3 - x^2 - 12x - 2x^2 + 2x + 24$		$(x - 2) \times \text{their} (x^2 - x - 12)$
$x^{2} - x^{2} - 12x - 2x^{2} + 2x + 24$		Allow two errors or omissions
$x^3 + x^2 - 6x - 4x^2 - 4x + 24$ or	A1	oe eg $x^3 - 3x^2 - 10x + 24$
$x^3 - 6x^2 + 8x + 3x^2 - 18x + 24$ or		Must be fully correct
$x^3 - x^2 - 12x - 2x^2 + 2x + 24$		
a = -3 and $b = -10$	A1	

Answer	Mark	Comments
$2a^3 - 7a^2 + 3a$	M1	Must be correct
$2a^2 - 7a + 3$	M1dep	Must be correct
		May also see factor a
(2a - 1)(a - 3)	A1	May also see factor a
3	A1ft	ft M1 M1 A0
		Other solutions may be seen but 3 must be selected as their answer

Alternative method		
$(x - a)(2x^2 + 2ax - 3)$	M1	Must be correct
$-3(x) - 2a^2(x) = -7a(x)$	M1dep	Equating coefficients of x
$2a^2 - 7a + 3$ and	A1	
(2a - 1)(a - 3)		
3	A1ft	ft M1 M1 A0
		Other solutions may be seen but 3 must be selected as their answer

Q5.

	Answer	Mark	Comments
(a)	$a^{3} + (2a \times a^{2}) - (a^{2} \times a) - 16$ = 0	M1	
	or $2a^3 - 16 = 0$ or $a^3 - 8 = 0$		
	$a^{3} = 8 \text{ or } a = {}^{3}\sqrt{8}$ (hence $a = 2$)	A1	clearly shown

(b)	Alternative method 1	
-----	----------------------	--

$(x-2)(x^2 + \dots + 8) (= 0)$	M1	
$(x-2)(x^2+6x+8) (= 0)$	A1	
$(x+m)(x+n) \ (= 0)$	M1	where $mn = 8$ and $m + n = 6$

Q4.

2, -2, -4	A1				
Alternative method 2					
$(x^3 + 4x^2 - 4x - 16) \div (x - 2)$ = x ² + ax +	M1	Attempt at long division of polynomials <i>a</i> need not be correct to score M1			
$x^2 + 6x + 8$	A1				
(x+m)(x+n) (= 0)	M1	where $mn = 8$ and $m + n = 6$			
2, -2, -4	A1				
Alternative method 3					
$(x + 4)(x^2 +) (= 0)$	M1				
$(x + 4)(x^2 - 4) (= 0)$	A1				
(x + 4)(x + 2)(x - 2) (= 0)	M1	or $(x + 4) = 0$ or $(x^2 - 4) = 0$			
2, -2, -4	A1				
Alternative method 4					
<i>x</i> = 2	B1				
testing a value of $x (x \neq 2)$ to see if	M1				
f(x) = 0					
one of −2 or −4	A1				
2, -2, -4	A1				

Q6.

	Answer	Mark	Comments		
(a)	Alternative method 1				
	$(3)^3 - 8(3)^2 + 3a + 42 = 0$	M1	Equating to zero might not be seen until later in the working.		
	or 27 – 72 + 3 <i>a</i> + 42 = 0				
	3 <i>a</i> = 3	A1	3a = 3 implies $3a - 3 = 0$		

Alternative method 2		
$(x^3 - 8x^2 + ax + 42) \div (x - 3)$	M1	
to give a quotient of $x^2 - 5x +$		

(<i>a</i> – 15)		
and a remainder of $3a - 3$		
Remainder = 0 so $3a = 3$	A1	

Alternative method 3		
$x^3 - 8x^2 + ax + 42$	M1	
$= (x - 3)(x^{2} + px - 14)$		
Comparing x^2 coefficients gives $p = -5$		
Using $p = -5$ and comparing	A1	
x coefficients gives $a = 1$		

Additional Guidance

In alt 1 ... assuming that a = 1 and showing that substituting x = 3 in the expression gives zero is only verifying the result ... and scores SC1

SC1

Similarly, assuming a = 1 and working as in alt 2 and alt 3 to verify the result.

(b) Alternative method 1

$x^3 - 8x^2 + x + 42$	M1	Sight of quadratic with x² and – 14 as the first and last terms	
$\equiv (x - 3)(x^2 + kx - 14)$			
(x + 2) or (x - 7)	A1		
(x - 3)(x + 2)(x - 7)	A1	any order	

Alternative method 2

Substitutes another value into the expression and tests for '= 0'	M1	their value correctly substituted eg. $2^3 - 8(2)^2 + 2 + 42$ (= 20) $\neq 0$	
(x + 2) or (x - 7)	A1		
(x - 3)(x + 2)(x - 7)	A1	any order	

Alternative method 3		
Long division of polynomials getting as far as $x^2 - 5x$	M1	$(x^3 - 8x^2 + x + 42) \div (x - 3) = x^2$ - 5x - 14

(x + 2) or (x - 7)	A1	
(x-3)(x+2)(x-7)	A1	any order

Additional Guidance

An answer of $(x + 2)(x - 7)$ ie $(x - 3)$ missing implies M1 A1
An answer of $(x - 3)(x - 2)(x + 7)$ scores SC1 sign errors in two factors
Ignore 'solutions' ie $x = 3$, -2 and 7

Q7.

	Answer	Mark	Comments
(a)	$200\left(-\frac{1}{2}\right)^{3} + 100\left(-\frac{1}{2}\right)^{2}$ $-18\left(-\frac{1}{2}\right) - 9$	M1	oe eg 200 $\left(-\frac{1}{8}\right) + 100\left(\frac{1}{4}\right) - 18\left(-\frac{1}{2}\right) - 9$
	− 25 + 25 + 9 − 9 = 0 with M1 seen	A1	must evaluate each term and equate to zero

Additional Guidance		
Condone $\left(\frac{1}{2}\right)^2$ for $\left(-\frac{1}{2}\right)^2$		
$200\left(-\frac{1}{2}\right)^3 + 100\left(-\frac{1}{2}\right)^2 - 18\left(-\frac{1}{2}\right) - 9 = 0$	M1A0	

(b)	(100 <i>x</i> ² – 9)	M1	
	(10x - 3)(10x + 3) or $(x =)$	M1dep	oe eg ($x = \sqrt{0.09}$
	√ <u>100</u>		
	–0.5 and –0.3 and 0.3	A1	oe eg fractions

Additional Guidance	
-0.5 and -0.3 or -0.5 and 0.3 with the other solution missing implies $(100x^2 - 9)$	M1M0A0
-0.3 and 0.3 on answer line implies $(10x - 3)(10x + 3)$	M2A0

Answer	Mark	Comments
Alternative method 1		
$(-c)^3 - 10(-c) - c \ (= 0)$	M1	oe
or		
$-c^3 + 10c - c \ (= 0)$		
or		
$-c^3 + 9c (= 0)$		
$c(9 - c^2) (= 0)$	M1dep	oe factorised expression or
or		quadratic equation
c(3+c)(3-c) (= 0)		
or		
$c^2 = 9$		
3 with no other value(s)	A1	SC2 answer 3 with one or both of -3 and 0 and no other value

Alternative method 2			
$(x + c)(x^2 - cx - 1)$	M1		
$-1 - c^2 = -10$	M1dep	oe quadratic equation	
3 with no other value(s)	A1	SC2 answer 3 with one or both of −3 and 0 and no other value	

Additional Guidance		
$(-3)^3 - 10(-3) - 3 = 0$ and Answer 3 (no part marks)	M2, A1	
$(-3)^3 - 10(-3)3 = 0$ and Answer 3	Zero	
$3^3 - 10(3)3 = 0$ and Answer 3	Zero	
Answer 3 with no incorrect working	M2, A1	
Allow recovery of missing brackets		

Q9.

A	Mork	Commonto
Answer	Mark	Comments

(a)	
-----	--

)	Identifies $(x=)-\frac{1}{3}$	M1	may be implied
	$3\left(-\frac{1}{3}\right)^3 - 2\left(-\frac{1}{3}\right)^2$ $-7\left(-\frac{1}{3}\right) - 2 = 0$	A1	oe must show four terms and equate to 0
	or $\frac{1}{9} - \frac{2}{9} + \frac{7}{3} - 2 = 0$		

Alternative method 1		
$(3x + 1)(x^2 - x)$	M1	
or		
$ \frac{x^2 - x - 2}{3x + 1 3x^3 + 4x^2 - 2x - 1} $		
$(3x + 1)(x^2 - x - 2)$	A1	
or		
$3x + 1 \overline{)3x^3 + 4x^2 - 2x - 1}$		
(3x + 1)(x + 1)(x - 2)	A1	

Alternative method 2		
f(-1) = 0 or f(2) = 0	M1	
f(-1) = 0 and $f(2) = 0$	A1	
(3x + 1)(x + 1)(x - 2)	A1	

Section 2.12

Mark schemes

Q1.

Answer	Mark	Comments
Alternative method 1		

$6(x^2 - 4x \dots)$	M1	oe
or 6(<i>x</i> – 2) ²		eg 6[(<i>x</i> ² – 4 <i>x</i>)]
$6[(x-2)^2-2^2]$	M1dep	oe
or $6[(x-2)^2 - 4]$ or $6[(x-2)^2 - 4 + \frac{17}{6}]$ or $6[(x-2)^2 - \frac{7}{6}]$ or $6(x-2)^2 - 6 \times \frac{7}{6}$		the bracket is after the 2 ² and the 4 here. If they put something else inside the bracket it is incorrect unless it is equivalent to one of the fully complete versions listed
or $6(x-2)^2 - 24 + 17$		
$6(x-2)^2 - 7$	A1	

Alternative method 2		
$ax^2 + 2abx + ab^2$ (+ c)	M1	expansion of brackets
$a = 6$ and $2ab = -24$ and $ab^2 + c = 17$	M1dep	
b = -2 and $c = -7$	A1	

Q2.

Answer	Mark	Comments		
Alternative method 1	Alternative method 1			
sight of 2(<i>x</i> ² – 8 <i>x</i>)	M1			
sight of $2(x - 4)^2$	M1dep			
$2[(x-4)^2 - 16] + 13$	M1dep			
or				
$2(x-4)^2 - 32 + 13$				
or				
$2[(x-4)^2 - 16 + 6.5]$				
$2(x-4)^2 - 19$	A1	or $a = 2, b = -4, c = -19$		

Alternative method 2		
<i>a</i> = 2	B1	
-16 = 2ab or $-16 = 4b$	M1	
or $13 = ab^2 + c$ or $13 = 2b^2 + c$		
$-16 = 2ab$ and $13 = ab^2 + c$	M1dep	oe
or		
$-16 = 4b$ and $13 = 2b^2 + c$		
$2(x-4)^2 - 19$	A1	or $a = 2, b = -4, c = -19$

Q3.

Answer	Mark	Comments
Alternative method 1		
$-2((3x+)^2)$	M1	from $\frac{-2\left(9x^2+6x-\frac{7}{2}\right)}{0e}$
$-2\left((3x+1)^2 - 1^2 - \frac{7}{2}\right)$	M1dep	oe
$9-2(3x + 1)^2$	A1	

Alternative method 2		
$-18\left(\left(x+\frac{1}{3}\right)^2\right)$	M1	from $-18\left(x^2 + \frac{2}{3}x - \frac{7}{18}\right)$
		oe
$10((1)^2(1)^2, 7)$		oe
$-18\left(\left(x+\frac{1}{3}\right)^2-\left(\frac{1}{3}\right)^2-\frac{7}{18}\right)$	M1dep	
$9-2(3x+1)^2$	A1	

Q4.

Answer Mark	Comments
-------------	----------

Alternative method 1			
$(n-3)^2$	M1	Allow $(n - 3)(n - 3)$ for $(n - 3)^2$	
$(n-3)^2 - 9 + 14$	A1	Allow $(n - 3)(n - 3)$ for $(n - 3)^2$	
or			
$(n - 3)^2 + 5$			
$(n - 3)^2 \ge 0$ then adding 5 so always positive	A1ft	oe Allow $(n - 3)(n - 3)$ for $(n - 3)^2$	
or		ft M1 A0	
States minimum value is 5		Must see M1 and attempt ($n -$	
or		$(3)^2 + k$	
States (3, 5) is minimum point		ft $(n - 3)^2 + k$ where $k > 0$	
		SC2 States minimum value is 5	
		or	
		States (3, 5) is minimum point	

Alternative method 2			
Quadratic curve sketched in first quadrant with minimum point above the <i>x</i> -axis	M1	Labelling on axes not required	
(discriminant =) −20	A1		
States no (real) roots	A1ft	oe Allow roots \rightarrow solutions	
		ft M1 A0	
		Must see M1 and attempt a discriminant	
		ft discriminant < 0	
		SC2 States minimum value is 5	
		or	
		States (3, 5) is minimum point	

Alternative method 3		
2n - 6 = 0	M1	oe equation
		e.g. 2 <i>n</i> = 6 or <i>n</i> = 3
(second derivative =) 2	A1	
States minimum value is 5	A1ft	ое

or	ft M1 A0
States (3, 5) is minimum point	Must see M1 and attempt a second derivative
	ft (second derivative) > 0
	SC2 States minimum value is 5
	or
	States (3, 5) is minimum point

Q5.

	Answer	Mark	Comments
(a)	Alternative method 1		
	$(x + 3)^2 - 9 (+ 2)$	M1	
	h = 3 and $k = -7$	A1	

Alternative method 2		
$x^2 + 2hx + h^2 (+ k)$	M1	
or $2hx = 6x$ or $2h = 6$ or $h^2 + k = 2$		
h = 3 and $k = -7$	A1	

(b)	(-3, -7)	B1 ft	ft their h and k from part (a) only	
			if $h \neq 0$ and $k \neq 0$	

Additional Guidance

for their h and k, the minimum point is (-h, k)

(c)

Additional Guidance

For their *h* and *k*, the solutions are $-h \pm \sqrt{(-k)}$

If their *k* is > 0 then $\sqrt{(-k)}$ will be $\sqrt{}$ of a negative number ... condone Any use of the quadratic formula must be completely correct

Q6.

Answer	Mark	Comments		
Alternative method 1				
$12(x^2-5x)$	M1	ое		
or 12(<i>x</i> – 2.5) ²		eg 12{ $(x^2 - 5x) \dots$ } or 12 $(x^2 - 5x \dots)$		
$12\{(x-2.5)^2-2.5^2\}$	M1dep	oe		
or 12(<i>x</i> – 2.5) ² – 75 …		eg 12{ $(x - 2.5)^2 - 2.5^2 \dots$ }		
$12(x - 2.5)^2 - 12 \times 2.5^2 + 5$	M1dep	ое		
or $12(x - 2.5)^2 - 70$		eg 12(x - 2.5) ² - 12 × 2.5 ² + 12 × $\frac{5}{12}$		
$12\left(\frac{2x-5}{2}\right)^2 - 12 \times 2.5^2 + 5$	M1dep	oe eg $12\left(\frac{2x-5}{2}\right)^2 - 12 \times 2.5^2 + 12 \times \frac{5}{12}$		
$3(2x-5)^2-70$	A1	oe		
or				
a = 3 $b = 2$ $c = -5$ $d = -70$				
or				
$3(5-2x)^2-70$				
or				
a = 3 $b = -2$ $c = 5$ $d = -70$				

Alternative method 2		
$3(4x^2-20x)$	M1	oe
or 3(2 <i>x</i> – 5) ²		eg 3{ $(4x^2 - 20x) \dots$ }
		or 3(4 <i>x</i> ² – 20 <i>x</i>)
$3\{(2x-5)^2-5^2\}\dots$	M1dep	ое

or $3(2x-5)^2 - 75 \dots$		eg 3{ $(2x-5)^2 - 5^2$ }
$3\{(2x-5)^2-5^2\}+5$	M1dep	oe
		eg $3\{(2x-5)^2-5^2+\frac{5}{3}\}$
$3(2x-5)^2 - 3 \times 5^2 + 5$	M1dep	oe
		eg $3(2x-5)^2 - 3 \times 5^2 + 3 \times \frac{5}{3}$
$3(2x-5)^2-70$	A1	ое
or		
a = 3 $b = 2$ $c = -5$ $d = -70$		
or		
$3(5-2x)^2-70$		
or		
a = 3 $b = -2$ $c = 5$ $d = -70$		

Additional Guidance	
5	
For M marks 2.5 may be seen as 2	
For M marks $(x - 2.5)^2$ may be replaced by $(2.5 - x)^2$ etc	
Expansion of given form followed by trial and improvement	
eg1 $3(2x-5)^2 - 70$ (or $a = 3$ $b = 2$ $c = -5$ $d = -70$)	5 marks
eg2 Not fully correct	Zero

Section 2.13 Mark schemes

Q1.

	Answer	Mark	Comments
(a)	Line joining (0,4) and (1,3)	B1	may be drawn free hand
	(2, 4) plotted as a maximum value	M1	needs to be some sort of graph showing a maximum value

Curve drawn through (1, 3), (2, 4), (3, 3) and (4, 0)	A1	all points should be within half a square horizontally or vertically
Line joining (4,0) and (6,4)	B1	may be drawn free hand

(b)	Alternative method 1		
	Rearranging first to get $x = \frac{6 - g(x)}{3}$	M1	oe eg $x = \frac{6-y}{3}$ or $2-\frac{y}{3}$ y-6 = -3x is not enough to gain M1
	$g^{-1}(x) = \frac{6-x}{3}$	A1	oe eg g ⁻¹ (x) = $\frac{x-6}{-3}$ or g ⁻¹ (x) = $-\frac{x-6}{3}$ or g ⁻¹ (x) = $\frac{x}{-3} + 2$

Alternative method 2		
Putting the correct terminology in to get $x = 6 - 3g^{-1}(x)$	M1	oe eg $x = 6 - 3y$ or $3y = 6 - x$
$g^{-1}(x) = \frac{6-x}{3}$	A1	oe eg g ⁻¹ (x) = $\frac{x-6}{-3}$ or g ⁻¹ (x) = $\frac{x-6}{-3}$ or g ⁻¹ (x) = $\frac{x}{-3} + 2$

Additional Guidance		
Answer left as $y = \frac{6-x}{3}$ should gain M1 on either scheme.	M1A0	
$x = \frac{6-y}{3}$ can gain M1 but not A1	M1A0	
Condone $g^{-1}(x)$ missed on answer line (as long as nothing else is written in its place)		
Flow charts may be used. Mark as oe		
Penalise additional incorrect working		

Q2.

Answer	Mark	Comments
Cubic curve from $x = -2$ to $x = 6$ and maximum point at $(-1, a)$ where a is negative and minimum point at $(2, b)$ where b is less than $aandincreasing through (5, 0)$	B4	B3 curve from $x = -2$ to $x = 6$ and maximum point at $(-1, c)$ where c is any value and minimum point at $(2, d)$ where d is less than c and d is negative and increasing through $(5, 0)$ or a B4 response apart from cubic curve not drawn from $x = -2$ to x = 6

· · · ·	
	B2 curve with maximum point at (-1, <i>e</i>) where <i>e</i> is any value
	and
	minimum point at (2, <i>f</i>) where <i>f</i> is less than <i>e</i>
	B1 curve with maximum point at $(-1, g)$ where g is negative
	or
	curve with minimum point at (2, <i>h</i>) where <i>h</i> is negative
	or
	curve increasing through (5, 0)
	SC2 max and min correct and increasing through (5, 0) but with straight lines rather than a curve.

Q3.

Answer	Mark	Comments
(gradient for $0 \le x \le 4 =$)	M1	oe
12 4 or 3		
(gradient for $4 < x \le 8 =$)	M1	oe
$\frac{12}{-4}$ or -3		Accept – their 3
y = their -3x + c and	M1	y - 0 = their $-3(x - 8)$ or
substitutes (8,0) or (4,12)		y - 12 = their $-3(x - 4)$
3x and $-3x + 24$ or $-3(x - 8)$	A2	A1 $3x$ or $-3x + 24$ or $-3(x - 8)$

in correct places on answer lines	in correct place on answer line or
	$y = 3x$ (for $0 \le x \le 4$) or
	y = -3x + 24 or $y = -3(x - 8)$
	(for 4 < <i>x</i> ≤ 8)

Q4.

Answer	Mark	Comments
$(f(x) =) -x^2$	B1	
(f(x) =) -4	B1	
(f(x) =) 4x - 16	B1	
All domains correctly paired with the functions using the correct notation for the domains	B1	Accept use of < or \leq do not accept (eg) $-1 \leq -x^2 < 2$
eg −1 ≤ <i>x</i> < 2		

Q5.

Answer	Mark	Comments
Straight line through (-3, 0) and (0, 3)	B1	Lines must be ruled Only penalise (by 1 mark)
Straight line through (0, 3) and (1, 3)	B1	extended lines if B1 B1 B1 SC2 Any graph that passes
Straight line through (1, 3) and (2, 1)	B1	through (–3, 0) and (0, 3) and (1, 3) and (2, 1)

Q6.

	Answer	Mark	Comments
(a)	Straight line between $(-2, 7)$	B1	Tolerance of ±1 small square
	and (0, 3)		Allow line to be extended
	Points (0, 3) (1, 4) (2, 3) (3, 0) (4, -5)	M1	Tolerance of ±1 small square
	(4, -5)		May be plotted or seen in a table
			Points can be implied

Correct smooth parabolic curve with maximum at (1, 4)	A1	Tolerance of ± 1 small square Allow (ruled) straight line between (3, 0) and (4, -5) Curve passing through all correct points within tolerance scores M1A1
Straight line between (4, –5) and (5, 0)	B1	Tolerance of ±1 small square Allow line to be extended

Additional Guidance

Ignore extra points plotted	
Tolerance of ± 1 small square means it is on the edges of or within the shaded area	
Points only can score a maximum of M1	
Ruled straight lines for curve apart from between $(3, 0)$ and $(4, -5)$	A0
If all 4 marks would be awarded but either	3 marks
(i) graph has a line or a curve that extends beyond the individual domains	
or	
(ii) the curve does not meet a line at a cusp	

(b)	$-5 \le f(x) \le 7$	B2ft	Correct or ft their graph in (a) for B2
	or $7 \ge f(x) \ge -5$		ft their graph in (a) for B1
	or [–5, 7]		B1ft $-5 \le f(x)$ or $f(x) \le 7$ on their own or embedded within an interval for $f(x)$
			or only –5 and 7 chosen
			eg -5 < f(x) < 7

Additional Guidance

Allow $f(x)$ to be y or f or fx		
eg1 $-5 \le y \le 7$	B2	
eg2 f≤7	B1	
Allow as two inequalities $f(x) \ge -5$ (and/or) $f(x) \le 7$	B2	
ft their graph if incomplete eg no graph drawn for $-2 \le x < 0$ but otherwise correct and answer $-5 \le f(x) \le 4$	B2ft	
ft their graph if drawn for x values beyond [-2, 5]		
eg 1 straight line from (-3, 8) to (6, -1) and answer $-1 \le y \le 8$	B2ft	
eg 2 straight line from (-3, 8) to (6, -1) and answer $f(x) \le 8$	B1ft	
Straight line from (–2, 9) to (6, –7) and answer –7 $\leq y \leq 9$	B2ft	
Straight line from (0, 9) to (5, -4) and answer $-4 \le f(x) \le 9$	B2ft	
B2ft (or B1ft) can be awarded for a range beyond [–7, 9] if it is clear from working (eg a table of values) where the answer is from		
–5 to 7 inclusive is B2 whereas –5 to 7 is B1		
B1 for a correct inequality embedded		
eg 1 $-5 < f(x) \le 7$		
eg 2 $-5 \le f(x) \le 0$		
eg 3 $-2 \le y \le 7$		
For B1 ignore incorrect notation if only –5 and 7 chosen		
eg 1 $-5 \le x \le 7$		
eg 2 $-5 < x \le 7$		
eg 3 $-5 \ge f(x) \ge 7$		
eg 4 –5, 7		
{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7}		
Working out a statistical range eg -5 to $7 = 12$	B0	

Q7.

Answer	Mark	Comments
Line from (-4, 0) to (0, 4)	M1	mark intention
Line from (0, 4) to (2, −2)	M1	lines do not have to be straight but must pass through all integer

		points
Line from (2, −2) to (5, −2)	M1	only condone the first instance of a line that extends beyond the given domain
Straight line from $(-4, 0)$ to $(0, 4)$	A1	all straight lines must be the correct length with no other lines
and		graph must be accurate
straight line from (0, 4) to (2, −2)		SC3 (-4, 0) and (-3, 1) and (-2, 2) and (-1, 3) and (0, 4) and (1, 1) and (2, 2) and (2, 2) and (4
and		1) and (2, −2) and (3, −2) and (4, −2) and (5, −2) plotted (any other
straight line from $(2, -2)$ to $(5, -2)$		points plotted must be correct ones for the graph)
		SC2 (-4, 0) and (0, 4) and (2, -2) and (5, -2) plotted (any other points plotted must be correct ones for the graph)

Additional Guidance			
(crosses do not have to be shown)			
Dashed or dotted lines can score up to M3A0			
Points may be implied by a correct line			
M mark examples			
eg1 2 correct lines and 1 extended line (but otherwise correct)			
eg2 1 correct line and 2 extended lines (but otherwise correct)			
eg3 3 extended lines (but otherwise correct)			

Q8.

Answer	Mark	Comments
-3 2 6 14 with no other solutions		B3 three correct with at most one incorrect
		B2 two correct with at most two

incorrect
B1 one correct with at most three incorrect
SC2 –3 2 6 14 with no other values seen
SC1 Two or three of -3 2 6 14 with no other values seen

Additional Guidance		
Solutions may be in any order		
eg1 –3 14 6 2	B4	
eg2 14 –3	B2	
x < -32 < x < 6x > 14	SC2	
$2 \leq x \leq 6$	SC1	
-3 2 6 14 seen in working with no other values and answer line $-3 \le x \le 14$	SC2	

Q9.

Answer	Mark	Comments
<i>a</i> = 1	B1	
<i>b</i> = 2	B1	
$\frac{4-3}{5-2}$ or $\frac{1}{3}$	M1dep	oe eg $\frac{3-4}{2-5}$ or $\frac{-1}{-3}$
$c = \frac{1}{3}$ and $d = \frac{7}{3}$	A1	

Additional Guidance		
$(x-1)^2 + 2$	B2	
$\frac{1}{3}x + \frac{7}{3}$	M1A1	

Section 2.14 - 2.15

Mark schemes

Answer	Mark	Comments
x - 4 or $4 - x$ seen in working	M1	from a subtraction of the quadratic and linear
y = x - 4 drawn	A1	
5.3 and 1.7 and $y = x - 4$ drawn	A1	Allow [5.2, 5.4] and [1.6,1.8]

Additional Guidance	
Solutions with correct graph not seen eg from formula	M0A0A0
Solutions from quadratic graph drawn	M0A0A0

Q2.

Answer	Mark	Comments
$-4 = ab^{-1}$		oe eg <i>a</i> = -4 <i>b</i>
or	M1	
$-4 = \frac{a}{b}$		
$-\frac{4}{3}=ab^{-2}$		oe $a = -\frac{4}{3}b^2$
or	M1	
$-\frac{4}{3} = \frac{a}{b^2}$		
<i>b</i> = 3		
	A1	
<i>a</i> = –12	A1	

Q3.

	Answer	Mark	Comments
(a)	Correct line with $-1\frac{1}{2}$ labelled	B2	B1 For line through (3, 0) without $-1\frac{1}{2}$ labelled or

			for line with positive gradient through (0, $-1\frac{1}{2}$) (labelled), but not passing through (3, 0)
(b)	$x(x-3) = \frac{(x-3)}{2}$	M1	oe eg $2x^2 - 6x = x - 3$ or $2x^2 - 7x + 3 = 0$ or $x^2 - 3.5x + 1.5 = 0$ or $x^2 - 3.5x + 1.5 = 0$
	$x = \frac{1}{2}$	A1	

Q4.

Answer	Mark	Comments
2 - x or $x - 2$	M1	do not award M1 if you see evidence of incorrect method for finding a linear expression
y = 2 - x accurately drawn	M1	
3.4	A1	accept 3.3 to 3.5
0.6	A1	accept 0.5 to 0.7

Additional Guidance

For the first M1, start by looking for evidence of a correct method.

eg
$$x^2 - 4x + 2 + 3x - x^2 = -x + 2$$

or

 $x^2-4x+2=0 \longrightarrow x^2-3x-x+2=0 \longrightarrow -x+2=3x-x^2$

Attempts to solve $x^2 - 4x + 2 = 0$ by using the quadratic formula or by completing the square or by drawing a new quadratic graph (for $y = x^2 - 4x + 2$) score 0 marks

You might see work which uses the quadratic formula or completing the square which leads to answers of $2 \pm \sqrt{2}$... and if this follows working using a correct method to find the linear graph, it can be ignored (they could be using it as a check on their answers obtained graphically), but if it looks like it is their main method, then award 0 marks, as stated above.

Ignore any *y* coordinates that might accompany the final *x* values.

Answer	Mark	Comments			
Alternative method 1	Alternative method 1				
Correct substitution $x - \frac{-3}{x} = \frac{19}{4}$ or $x\left(x - \frac{19}{4}\right) = -3$	M1	penalise no brackets unless recovered			
$4x^2 - 19x + 12 (= 0)$	M1dep	oe eg $4x^2$ + 12 = 19 x must be integer values unless going on to complete the square			
(4x + a)(x + b) or $(4x - 3)(4x - 16)$	M1dep	where $ab = 12$ or $a + 4b = -$ 19			
(4x-3)(x-4)	A1				
$x = \frac{3}{4}$ and 4	A1				
or $x = \frac{3}{4}$ and $y = -4$					
or $x = 4$ and $y = -\frac{3}{4}$					
$y = -4$ and $-\frac{3}{4}$	A1	all 4 values must be correct to gain this mark			
or <i>x</i> = 4 and <i>y</i> = $-\frac{3}{4}$					
or $x = \frac{3}{4}$ and $y = -4$					

Alternative method 2		
Correct substitution $x - \frac{-3}{x} = \frac{19}{4}$ or $x\left(x - \frac{19}{4}\right) = -3$	M1	penalise no brackets unless recovered
$4x^2 - 19x + 12 (= 0)$	M1dep	oe eg $4x^2$ + 12 = 19x must be integer values unless going on to complete the square

$\frac{19\pm\sqrt{19^2-4\times4\times12}}{2\times4}$	M1dep	
$\frac{19 \pm \sqrt{169}}{8}$	A1	
$x = \frac{3}{4}$ and 4	A1	
or $x = \frac{3}{4}$ and $y = -4$		
or $x = 4$ and $y = -\frac{3}{4}$		
$y = -4$ and $-\frac{3}{4}$	A1	all 4 values must be correct to gain this mark
or $x = 4$ and $y = -\frac{3}{4}$		
or $x = \frac{3}{4}$ and $y = -4$		

Alternative method 3			
Correct substitution $x - \frac{-3}{x} = \frac{19}{4}$ or $x\left(x - \frac{19}{4}\right) = -3$	M1	penalise no brackets unless recovered	
$4x^2 - 19x + 12 (= 0)$ or $x^2 - \frac{19}{4}x + 3 (= 0)$	M1dep	oe eg $4x^2$ + 12 = 19x must be integer values unless going on to complete the square	
$4\left[\left(x-\frac{19}{8}\right)^2\dots\right]\dots$ or $\left[\left(x-\frac{19}{8}\right)^2\dots\right]\dots$	M1	oe	
$4\left(x - \frac{19}{8}\right)^2 - \frac{169}{16} = 0$ or $\left[\left(x - \frac{19}{8}\right)^2\right] - \frac{169}{64} = 0$	M1dep		
$x = \frac{3}{4}$ and 4	A1		

or $x = \frac{3}{4}$ and $y = -4$ or $x = 4$ and $y = -\frac{3}{4}$		
$y = -4 \text{ and } -\frac{3}{4}$ or $x = 4$ and $y = -\frac{3}{4}$ or $x = \frac{3}{4}$ and $y = -4$	A1	all 4 values must be correct to gain this mark

Alternative method 4		
Correct substitution $\frac{-3}{y} - y = \frac{19}{4} \text{ or } y\left(y + \frac{19}{4}\right) = -3$	M1	penalise no brackets unless recovered
4 <i>y</i> ² + 19 <i>y</i> + 12 (= 0)	M1dep	oe eg $4y^2$ + 12 = -19 <i>y</i> must be integer values unless going on to complete the square
(4y + a)(y + b) or $(4y + 3)(4y + 16)$	M1dep	where $ab = 12$ or $a + 4b = 19$
(4y + 3)(y + 4)	A1	
$y = -\frac{3}{4}$ and -4	A1	
or $y = -\frac{3}{4}$ and $x = 4$		
or $y = -4$ and $x = \frac{3}{4}$		
$x = 4$ and $\frac{3}{4}$	A1	all 4 values must be correct to gain this mark
or $y = -\frac{3}{4}$ and $x = 4$		
or $y = -4$ and $x = \frac{3}{4}$		

Alternative method 5		
Correct substitution $\frac{-3}{y} - y = \frac{19}{4} \text{ or } y\left(y + \frac{19}{4}\right) = -3$	M1	penalise no brackets unless recovered

4 <i>y</i> ² + 19 <i>y</i> + 12 (= 0)	M1dep	oe eg $4y^2$ + 12 = -19y must be integer values unless going on to complete the square
$\frac{-19\pm\sqrt{19^2-4\times4\times12}}{2\times4}$	M1dep	
$-\frac{19\pm\sqrt{169}}{8}$	A1	
$y = -\frac{3}{4}$ and -4	A1	
or $y = -\frac{3}{4}$ and $x = 4$		
or $y = -4$ and $x = \frac{3}{4}$		
$x = 4$ and $\frac{3}{4}$	A1	all 4 values must be correct to gain this mark
or $y = -\frac{3}{4}$ and $x = 4$		
or $y = -4$ and $x = \frac{3}{4}$		

Alternative method 6		
Correct substitution $\frac{-3}{y} - y = \frac{19}{4} \text{ or } y\left(y + \frac{19}{4}\right) = -3$	M1	penalise no brackets unless recovered
$4y^2 - 19y + 12 (= 0)$ or $y^2 - \frac{19}{4}y + 3 (= 0)$	M1dep	oe eg $4y^2$ + 12 = 19 <i>y</i> must be integer values unless going on to complete the square
$4\left[\left(y+\frac{19}{8}\right)^2,\ldots,\right]\ldots$	M1	oe
or $\left[\left(y+\frac{19}{8}\right)^2\right]$		
$4\left(y + \frac{19}{8}\right)^2 - \frac{169}{16} = 0$	M1dep	
$\operatorname{or}\left[\left(y+\frac{19}{8}\right)^2\right] - \frac{169}{64} = 0$		

$y = -\frac{3}{4}$ and -4	A1	
or $y = -\frac{3}{4}$ and $x = 4$		
or $y = -4$ and $x = \frac{3}{4}$		
$x = 4$ and $\frac{3}{4}$	A1	all 4 values must be correct to gain this mark
or $y = -\frac{3}{4}$ and $x = 4$		
or $y = -4$ and $x = \frac{3}{4}$		

Additional Guidance			
Correct A marks must come from correct algebra in M marks			

Q6.

Answer	Mark	Comments
Alternative method 1		
$10x^{2} + 5x(x - 2) - 7(x - 2)^{2} + 23$	M1	oe
(= 0)		
$10x^2 + 5x^2 - 10x - 7x^2 + 28x$	M1dep	allow one sign error
- 28 + 23 (= 0)		oe eg $8x^2 + 18x - 5 (= 0)$
(4x - 1)(2x + 5)		oe
or		
$\frac{-18\pm\sqrt{18^2-4\times8\times-5}}{2\times8}$	M1dep	
or		
$-\frac{9}{8}\pm\sqrt{\frac{121}{64}}$		
$x = \frac{1}{4}$ and $x = -\frac{5}{2}$		oe values
or		

$x = \frac{1}{4}$ and $y = -\frac{7}{4}$	A1	
or		
$x = -\frac{5}{2}$ and $y = -\frac{9}{2}$		
$x = \frac{1}{4}$ and $y = -\frac{7}{4}$		oe values
and	A1	
$x = -\frac{5}{2}$ and $y = -\frac{9}{2}$		

Alternative method 2		
$10(y + 2)^2 + 5y(y + 2) - 7y^2 + 23$	M1	ое
(= 0)		
$10y^2 + 40y + 40 + 5y^2 + 10y -$		allow one sign error
$7y^2$	M1dep	oe eg 8 <i>y</i> ² + 50 <i>y</i> + 63 (= 0)
+ 23 (= 0)		
(4y + 7)(2y + 9)		oe
or		لر
$\frac{-50\pm\sqrt{50^2-4\times8\times63}}{2\times8}$	M1dep	
or		
$-\frac{25}{8}\pm\sqrt{\frac{121}{64}}$		
$y = -\frac{7}{4}$ and $y = -\frac{9}{2}$		oe values
or		
$y = -\frac{7}{4}$ and $x = \frac{1}{4}$	A1	
or		
$y = -\frac{9}{2}$ and $x = -\frac{5}{2}$		
$y = -\frac{7}{4}$ and $x = \frac{1}{4}$		oe values

and	A1	
$y = -\frac{9}{2}$ and $x = -\frac{5}{2}$		

Q7.

Answer	Mark	Comments
Alternative method 1		
$x^{2} + (2x)^{2} = 20 \text{ or } \sqrt{20 - x^{2}} = 2x$	M1	oe Condone absence of brackets
$5x^2 = 20 \text{ or } 5x^2 - 20 (= 0)$	M1	oe eg $x^2 = 4$
		Collects terms for their quadratic to $ax^2 = b$ or $ax^{2-} b$ (= 0)
		a and b both non-zero
		This mark implies the first M1
$\sqrt{\frac{20}{\text{their 5}}}$ or $x = \sqrt{4}$ or	M1	Correct attempt to solve their quadratic
5(x+2)(x-2) (= 0)		oe eg $(x + 2)(x - 2) (= 0)$
		If using formula must substitute correctly
		If using completing the square must correctly obtain
		$(px + q)^2 = r \text{ or } (px + q)^2 - r (= 0)$
		p, q and r non-zero
x = 2 and $x = -2$	A1	Allow $x = \pm 2$
or		
x = 2 and $y = 4$		
or		
x = -2 and $y = -4$		
D (2, 4) and E (-2 , -4)	A1	Correct letter must be linked to correct point
		SC2 Both points correct by T & I
		SC1 One point correct by T & I

Alternative method 2		
$\left(\frac{y}{2}\right)^2 + y^2 = 20 \text{ or}$ $\sqrt{20 - y^2} = \frac{y}{2}$	M1	oe Condone absence of brackets
$5y^2 = 80 \text{ or } \frac{5}{4}y^2 = 20 \text{ or}$ $5y^2 - 80 = 0$	M1	oe eg $y^2 = 16$ Collects terms for their quadratic to $ay^2 = b$ or $ay^2 - b$ (= 0) a and b both non-zero This mark implies the first M1
$\sqrt{\frac{80}{\text{their 5}}}$ or $y = \sqrt{16}$ or $5(y + 4)(y - 4) (= 0)$	M1	Correct attempt to solve their quadratic oe eg $(y + 4)(y - 4) (= 0)$ If using formula must substitute correctly If using completing the square must correctly obtain $(py + q)^2 = r \text{ or } (py + q)^2 - r (= 0)$ p, q and r non-zero
y = 4 and y = -4 or y = 4 and x = 2 or y = -4 and $x = -2$	A1	Allow $y = \pm 4$
<i>D</i> (2, 4) and <i>E</i> (−2 , −4)	A1	Correct letter must be linked to correct point SC2 Both points correct by T & I SC1 One point correct by T & I

Q8.

Answer	Mark	Comments
x - 1 = 3(y - 2)	M1	oe Rearranging one of the two equations
or		x - 1 = 3y - 6 or $x + 6 = 4y - 4$

x + 6 = 4(y - 1)		
x - 3y = -5 oe	M1	ft from their equations (no further
<i>x</i> – 4 <i>y</i> = –10 oe	M1	errors) oe eg attempts substitution and rearranges to a suitable form (earns M2)
<i>x</i> = 10 or <i>y</i> = 5	A1ft	Correct elimination from their equations if at least M1 earned
x = 10 and y = 5	A1	SC1 for $x = 10$ and $y = 5$ from no (or incorrect) working

Q9.

Answer	Mark	Comments
Alternative method 1		
$3x + 5 = \frac{2}{x}$ or $x(3x + 5) = 2$	M1	oe
$3x^2 + 5x - 2 (= 0)$ or $3x^2 + 5x = 2$	M1dep	
(3x + a)(x + b) (= 0)	M1dep	ab = -2 or a + 3b = 5
(3x - 1)(x + 2) (= 0)	A1	
$ \begin{array}{c} \frac{1}{3} & x = -2 & \text{or} & x = \frac{1}{3} \\ x = 6 \end{array} $	A1	
or $x = -2 y = -1$		
$\begin{array}{c} x = \frac{1}{3} & x = -2 \\ = 6 \end{array} x = \frac{1}{3} & y \\ x = \frac{1}{3$	A1	either correct <i>x</i> 's and correct <i>y</i> 's or correct coordinate pairs
or		
y = 6 $y = -1$ $x = -2$ $y = -1$		

Alternative method 2		
$3x + 5 = \frac{2}{x}$ or $x(3x + 5) = 2$	M1	oe

$3x^2 + 5x - 2 (= 0)$ or $3x^2 + 5x = 2$	M1dep	
$x = \frac{\frac{-5 \pm \sqrt{[(5)^2 - 4(3)(-2)]}}{2(3)}}$	M1dep	allow one sign error but the 2 × 3 term must be beneath the full numerator
$x = \frac{-5 \pm 7}{6}$	A1	
$ \begin{array}{c} x = \frac{1}{3} \\ x = -2 \\ = 6 \end{array} \text{ or } x = \frac{1}{3} \\ y \\ \end{array} $	A1	
or $x = -2 y = -1$		
$\begin{array}{c} x = \frac{1}{3} & x = -2 \\ = 6 \end{array} x = \frac{1}{3} & y \\ x = \frac{1}{3$	A1	either correct <i>x</i> 's and correct <i>y</i> 's or correct coordinate pairs
or		
y = 6 $y = -1$ $x = -2$ $y = -1$		

Alternative method 3		
$3x + 5 = \frac{2}{x}$ or $x(3x + 5) = 2$	M1	oe
$3x^2 + 5x - 2 (= 0)$ or $3x^2 + 5x = 2$	M1dep	
$(3 \times) (x + \frac{5}{6})^2$	M1dep	
$x + \frac{5}{6} = \pm \frac{7}{6}$	A1	
$ \begin{array}{c} x = \frac{1}{3} & x = -2 & \text{or} & x = \frac{1}{3} & y \\ = 6 & \end{array} $	A1	
or $x = -2 y = -1$		
$\begin{array}{c} x = \frac{1}{3} & x = -2 \\ x = 6 \end{array} \qquad x = \frac{1}{3} & y \\ x = \frac{1}$	A1	either correct <i>x</i> 's and correct <i>y</i> 's or correct coordinate pairs
or		
y = 6 $y = -1$ $x = -2$ $y = -1$		

Alternative method 4		
$y = 3 \left(\frac{2}{y}\right) + 5 \text{ or } \frac{y(y-5)}{3}$	M1	oe
$y^2 - 5y - 6 = 0$ or $y^2 - 5y = 6$	M1dep	
(y + a)(y + b) (= 0)	M1dep	ab = -6 or $a + b = -5$
(y-6)(y+1) (= 0)	A1	
y = 6 y = -1 or $y = 6\frac{1}{3}$	A1	
or $y = -1 x = -2$		
$\begin{array}{c} x = \frac{1}{3} & x = -2 \\ = 6 \end{array} \qquad x = \frac{1}{3} & y \\ x = \frac{1}{3$	A1	either correct <i>x</i> 's and correct <i>y</i> 's or correct coordinate pairs
or		
y = 6 $y = -1$ $x = -2$ $y = -1$		

Alternative method 5		
$y = 3 \left(\frac{2}{y}\right) + 5 \text{ or } \frac{y(y-5)}{3}$	M1	oe
$y^2 - 5y - 6 = 0$ or $y^2 - 5y = 6$	M1dep	
$y = \frac{5 \pm \sqrt{[(-5)^2 - 4(1)(-6)]}}{2(1)}$	M1dep	allow one sign error but the 2 × 1 term must be beneath the full numerator
$y = \frac{5 \pm 7}{2}$	A1	
y = 6 y = -1 or $y = 6\frac{1}{3}$	A1	
or $y = -1 x = -2$		
$\begin{array}{c} x = \frac{1}{3} & x = -2 \\ = 6 \end{array} \qquad x = \frac{1}{3} & y \\ x = \frac{1}{3$	A1	either correct <i>x</i> 's and correct <i>y</i> 's or correct coordinate pairs
or		
y = 6 $y = -1$ $x = -2$ $y = -1$		

Alternative method 6		
$y = 3 \left(\frac{2}{y}\right) + 5 \text{ or } \frac{y(y-5)}{3} =$	M1	oe
$y^2 - 5y - 6 = 0$ or $y^2 - 5y = 6$	M1dep	
$(y - \frac{5}{2})^2$	M1dep	
$y - \frac{5}{2} = \pm \frac{7}{2}$	A1	
y = 6 y = -1 or $y = 6\frac{1}{3}$	A1	
or $y = -1 x = -2$		
$\begin{array}{c} x = \frac{1}{3} & x = -2 \\ = 6 \end{array} \qquad x = \frac{1}{3} & y \\ x = \frac{1}{3$	A1	either correct <i>x</i> 's and correct <i>y</i> 's or correct coordinate pairs
or		
y = 6 $y = -1$ $x = -2$ $y = -1$		

Additional Guidance	
Trial and improvement 0 marks	No working shown 0 marks
The instructions were clearly stated	d in the question.

Q10.

Answer	Mark	Comments
$(4 - x)^2 = 4x + 5$	M1	
$16 - 4x - 4x + x^2 = 4x + 5$	M1Dep	Allow one error but must be a quadratic in x
$x^2 - 12x + 11 (= 0)$	A1	oe Must be 3 terms
(x - 11)(x - 1) (= 0)	M1	$\frac{12 \pm \sqrt{(-12)^2 - 4(1)(11)}}{2} $ or $(x-6)^2 - 36 + 11 = 0$ oe
x = 11 and x = 1	A1ft	Must have M3 to ft

		x = 11 and y = -7 or x = 1 and y = 3
<i>x</i> = 11 and <i>y</i> = –7 and	A1	
x = 1 and $y = 3$		

Alternative method		
$y^2 = 4(4 - y) + 5$	M1	
$y^2 = 16 - 4y) + 5$	M1dep	Allow one error but must be a quadratic in y
y² + 4y - 21 (= 0)	A1	oe Must be 3 terms
(y + 7)(y - 3) (= 0)	M1	$\frac{-4\pm\sqrt{4^2-4(1)(-21)}}{2}$ or
		$(y+2)^2 - 4 - 21 = 0$ oe
y = -7 and $y = 3$	A1ft	Must have M3 to ft
		x = 11 and y = -7 or
		x = 1 and $y = 3$
<i>x</i> = 11 and <i>y</i> = –7 and	A1	
<i>x</i> = 1 and <i>y</i> = 3		

Q11.

Answer	Mark	Comments
Alternative method 1		
$(x-2)^2 + (2x+1-1)^2 = 16$	M1	oe
		Eliminates y
$x^2 - 2x - 2x + 4 + 4x^2 = 16$	M1dep	oe
or 5 <i>x</i> ² – 4 <i>x</i> – 12 (= 0)		Expands both brackets correctly
(5x + 6)(x - 2) (= 0) or	M1	$\frac{2}{5} \pm \sqrt{\frac{64}{25}}$
$4 \pm \sqrt{(-4)^2 - 4 \times 5 \times -12}$		Correct attempt to solve their 3- term quadratic
2×5		Allow recovery of brackets in formula

		Allow 4 ² for (–4) ² Implied by correct solutions to their 3-term quadratic seen
(x =) -1.2 and $(x =)2or (x =) -1.2 and (y =) -1.4or (x =) 2 and (y =) 5with 5x^2 - 4x - 12 (= 0) seen$	A1	oe eg $(x =) -\frac{6}{5}$ and $(x =) 2$ with $5x^2 - 4x - 12$ (= 0) seen
(-1.2, -1.4) and $(2, 5)with 5x^2 - 4x - 12 (= 0) seen$	A1	oe eg $(-\frac{6}{5}, -\frac{7}{5})$ and 2, 5) with $5x^2 - 4x - 12$ (= 0) seen

Alternative method 2		
$x^{2} - 2x - 2x + 4 + y^{2} - y - y + 1 = 16$	M1	oe Expands both brackets correctly
$x^{2} - 2x - 2x + 4 + (2x + 1)^{2}$ $- (2x + 1) - (2x + 1) + 1 = 16$ or 5x ² - 4x - 12 (= 0)	M1dep	oe Eliminates y
(5x+6)(x-2) (= 0) or $\frac{4 \pm \sqrt{(-4)^2 - 4 \times 5 \times -12}}{2 \times 5}$	M1	$\frac{2}{5} \pm \sqrt{\frac{64}{25}}$ Correct attempt to solve their 3- term quadratic Allow recovery of brackets in formula Allow 4 ² for (-4) ² Implied by correct solutions to their 3-term quadratic seen
(x =) -1.2 and $(x =) 2or (x =) -1.2 and (y =) -1.4or (x =) 2 and (y =) 5with 5x^2 - 4x - 12 (= 0) seen$	A1	oe eg $(x =) -\frac{6}{5}$ and $(x =) 2$ with $5x^2 - 4x - 12$ (= 0) seen
(-1.2, -1.4) and $(2, 5)with 5x^2 - 4x - 12 (= 0) seen$	A1	oe eg $(-\frac{6}{5}, -\frac{7}{5})$ and 2, 5) with $5x^2 - 4x - 12$ (= 0) seen

Alternative method 3		
$\left(\left(\frac{y-1}{2}\right)-2\right)^2+(y-1)^2=16$	M1	or
(2)		Eliminates x
$\left(\frac{y-1}{2}\right)^2 - 2\left(\frac{y-1}{2}\right) - 2\left(\frac{y-1}{2}\right)$	M1dep	ое
		Expands $\left(\frac{y-1}{2}\right) - 2)^2$
$y^2 - y - y + 1 = 16$		Expands (2)
or $5y^2 - 18y - 35 (= 0)$		and $(y - 1)^2$ correctly
(5y + 7)(y - 5) (= 0)	M1	9 256
or		oe eg $\frac{9}{5} \pm \sqrt{\frac{256}{25}}$
$\frac{18\pm\sqrt{(-18)^2-4\times5\times-35}}{2\times5}$		Correct attempt to solve their 3-term quadratic
2×5		Allow recovery of brackets in formula
		Allow 18 ² for (–18) ²
		Implied by correct solutions to their 3-term quadratic seen
(y =) -1.4 and $(y =) 5$	A1	7
or (<i>x</i> =) –1.2 and (<i>y</i> =) –1.4		oe eg $(y =) -\overline{5}$ and $(y =) 5$
or (<i>x</i> =) 2 and (<i>y</i> =) 5		with $5y^2 - 18y - 35$ (= 0) seen
with $5y^2 - 18y - 35$ (= 0) seen		
(-1.2, -1.4) and (2, 5)	A1	oe eg $(-5, -5)$ and 2, 5)
with $5y^2 - 18y - 35$ (= 0) seen		
		with $5y^2 - 18y - 35$ (= 0) seen

Alternative method 4		
$x^2 - 2x - 2x + 4 + y^2 - y - y + 1 = 16$	M1	oe
1 = 16		Expands both brackets correctly
$\left(\frac{y-1}{2}\right)^2 - 2\left(\frac{y-1}{2}\right) - 2\left(\frac{y-1}{2}\right)$	M1dep	oe
$\left(\begin{array}{c} 2 \end{array}\right)^{-2} \left(\begin{array}{c} 2 \end{array}$		Eliminates x
4		
$4 + y^2 - y - y + 1 = 16$		
or 5 <i>y</i> ² – 18 <i>y</i> – 35 (= 0)		

(5y + 7)(y - 5) (= 0) or	M1	oe eg $\frac{9}{5} \pm \sqrt{\frac{256}{25}}$
$18 \pm \sqrt{(-18)^2 - 4 \times 5 \times -35}$		Correct attempt to solve their 3- term quadratic
2×5		Allow recovery of brackets in formula
		Allow 18 ² for (–18) ²
		Implied by correct solutions to their 3-term quadratic seen
(y =) −1.4 and (y =) 5	A1	oe eg (y =) $-\frac{7}{5}$ and (y =) 5
or (<i>x</i> =) –1.2 and (<i>y</i> =) –1.4		
or (<i>x</i> =) 2 and (<i>y</i> =) 5		with $5y^2 - 18y - 35$ (= 0) seen
with $5y^2 - 18y - 35$ (= 0) seen		
(-1.2, -1.4) and (2, 5)	A1	$\frac{6}{5}, \frac{7}{-5}$ and 2, 5)
with $5y^2 - 18y - 35$ (= 0) seen		oe eg $(-5, -5)$ and 2, 5)
		with $5y^2 - 18y - 35$ (= 0) seen

Additional Guidance	
Answers only (no valid working)	Zero
Both solutions from scale drawing	5 marks
(2, 5) is often seen without seeing any correct method	Zero
Allow one miscopy for up to M3A0A0	

Section 2.16

Mark schemes

Q1.

Answer	Mark	Comments
Elimination of one variable making an equation with at least two terms correct	M1	eg1 (elimination of <i>b</i> by adding 1st and 2nd equations) 5a + 3c = -1 with at least two terms correct eg2 (elimination of <i>a</i> by doubling

		1st equation and subtracting 3rd equation)
		5b - 7c = -1 with at least two terms correct
Elimination of one variable making an equation with at least two terms correct and	M1dep	eg1 (elimination of b by adding 1st and 2nd equations and elimination of b by trebling 3rd equation and subtracting 1st equation)
elimination of the same variable making a different equation with at least two		5a + 3c = -1 with at least two terms correct
terms correct		and
		5a + 11c = 23 with at least two terms correct
		eg2 (elimination of a by doubling 1st equation and subtracting 3rd equation and elimination of a by doubling 3rd equation and subtracting 2nd equation)
		5b - 7c = -1 with at least two terms correct
		and
		5b + c = 23 with at least two terms correct
Correct equation in one variable with two correct equations in the same two	M1dep	eg $3c - 11c = -1 - 23$ or $-8c = -24$
variables		or <i>c</i> = 3
		with $5a + 3c = -1$ and $5a + 11c = 23$
Two correct values with two	A1	eg $c = 3$ and $a = -2$
correct equations in the same two variables		with $5a + 3c = -1$ and $5a + 11c = 23$
a = -2 b = 4 c = 3	A1	eg <i>a</i> = -2 <i>b</i> = 4 <i>c</i> = 3
with two correct equations in the same two variables		with $5a + 3c = -1$ and $5a + 11c = 23$

Additional Guidance

The two correct equations in the same two variables referred to in the scheme are a pair from one of these columns

15 <i>b</i> – 13 <i>c</i> =	5a + 3c = -1	13 <i>a</i> + 9 <i>b</i> = 10			
21					
5 <i>b</i> – 7 <i>c</i> = –1	5a + 11c = 23	7a + 11b = 30			
5 <i>b</i> + <i>c</i> = 23	10 <i>a</i> + 14 <i>c</i> = 22	2 <i>a</i> – 14 <i>b</i> = – 60			
All equations ha	ave equivalents				
eg equivalents $1 - 3c$	for $5a + 3c = -1$	include –5 <i>a</i> – 3	Bc = 1 and 5a = -		
All equations in	two variables n	nust have terms	collected		
eg <i>a</i> + 4 <i>a</i> – 2 <i>c</i> - 1	+ 5 <i>c</i> = 4 – 5 rec	uires simplificat	ion to $5a + 3c = -$		
0a + 15b - 13c	= 21 is equivale	ent to 15 <i>b</i> – 13 <i>c</i>	= 21 etc		
Equations with	two terms corre	ct include			
eg1 (For $5b + c = 23$) $5b + c = 10$ and $-5b - c = 2$ and $5b - 3c = 23$					
eg2 (For $5a + 3c = -1$) $5a + 6c = -1$ and $-5a - 3c = 4$ and $5a = 2 - 3c$					
For equations with two terms correct the signs can be ignored if the modulus of the numbers in the correct equation are unchanged					
eg For the correct equation $5b - 7c = -1$ (so modulus 5, 7 and 1) equations with two terms correct include					
5b + 7c = 1 and $5b - 7c = 1$ and $-5b - 7c = 1$ and $-5b - 7c + 1 = 0$					
Up to M3 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts					
Elimination of variables may be seen from other approaches					
eg rearranges 1st equation to $a = 4 - 3b + 2c$ and substitutes into the 2nd and 3rd equations					
Correct values with no working				Zero	
Matrix method involving row reduction is equivalent to the methods in the mark scheme					
Correct inverse matrix seen with three correct solutions				M3A2	

Q2.

Answer	Mark	Comments		
Alternative method 1 Eliminate eliminating a second variable	Alternative method 1 Eliminates b from first two equations before eliminating a second variable			
Correct attempt to eliminate <i>b</i> from LHS of first two equations	M1	eg $2(4a - b + 3c) + 3a + 2b - c$ or $11a + 5c$ adding or subtracting the two equations can be implied from two terms correct		
Correct attempt to eliminate a or c from LHS of third equation and their equation in a and c	M1dep	eg 11 a + 5 c + 2 a - 5 c or 2(11 a + 5 c) - 11(2 a - 5 c)		
Correct equation in <i>a</i> or <i>c</i>	M1dep	eg 13 <i>a</i> = 52 or 65 <i>c</i> = 195 implied by <i>a</i> = 4 or <i>c</i> = 3 with M2		
Two correct values with M3	A1	eg $a = 4$ and $c = 3$ with M3		
a = 4 and $b = -2$ and $c = 3$ with M3	A1			

Alternative method 2 Eliminates a or c before eliminating a second variable

Vallable		
Two correct attempts to eliminate the same variable (a or c) from LHS	M1	eg (eliminating a)
		4a - b + 3c - 2(2a - 5c)
		and $2(3a + 2b - c) - 3(2a - 5c)$
		or
		-b + 13c and $4b + 13c$
Correct attempt to eliminate a second variable from LHS of their two equations	M1dep	eg – <i>b</i> + 13 <i>c</i> – (4 <i>b</i> + 13 <i>c</i>)
Correct equation in one variable	M1dep	eg - 5b = 10
Vallable		implied by $b = -2$ with M2
Two correct values with M3	A1	eg $b = -2$ and $a = 4$ with M3
		or
		b = -2 and $c = 3$ with M3
a = 4 and $b = -2$ and $c = 3$ with M3	A1	

Additional Guidance		
For the first two marks ignore the RHS of the equations		
First two method marks may be seen in one attempt		
eg Alt1 2(4 $a - b$ + 3 c) + 3 a + 2 $b - c$ + 2 $a - 5c$	M1M1	
Elimination may be seen from other approaches		
eg1 Alt 1 (equates expressions for $2b$ from first two equations)		
2(4a + 3c - 27) = 5 - 3a + c		
eg2 Alt 2 (rearranges third equation to $a = 2.5c - 3.5$ and substitutes into first two equations)		
4(2.5c - 3.5) - b + 3c and $3(2.5c - 3.5) + 2b - c$	M1	
Correct values with no working	M0A0	

Q3.

Answer	Mark	Comments
Alternative method 1		
Correct attempt to eliminate two variables from left hand side	M1	eg 2(2 <i>a</i> + <i>b</i> - <i>c</i>) - (4 <i>a</i> - 3 <i>b</i> - 2 <i>c</i>)
Correct attempt to eliminate two variables	M1dep	eg $2(2a + b - c) - (4a - 3b - 2c)$ = $2 \times 8 - (-9)$ or $5b = 25$
Solves their equation	M1dep	eg $b = 25 \div 5$ or $b = 5$
Substitutes their value into two equations and correct method to eliminate a variable	M1	eg $2a + 5 - c = 8$ and $6a + 15 + c = 0$ and $8a + 20 = 8$
$a = -\frac{3}{2}$ and $b = 5$ and $c = -6$	A1	oe

Alternative method 2		
Two correct attempts to eliminate same variable from	M1	eg $3(2a + b - c) + (4a - 3b - 2c)$
left hand side		and $4a - 3b - 2c + 6a + 3b + c$
Two correct attempts to	M1dep	eg 3(2 a + b - c) + (4 a - 3 b - 2 c)

eliminate same variable		= $24 - 9$ and $4a - 3b - 2c + 6a + 3b + c = 0 - 9$ or $10a - 5c = 15$ and $10a - c = -9$
Correct attempt to eliminate a variable from their two equations	M1dep	eg $10a - 5c - (10a - c) = 15 - 9$ or $-4c = 24$ or $c = -6$
Substitutes their value into two equations and correct method to eliminate a variable	M1	eg $2a + b + 6 = 8$ and $4a - 3b + 12 = -9$ and $2(2a + b + 6) - (4a - 3b + 12)$ $= 2 \times 8 - (-9)$
$a = -\frac{3}{2}$ and $b = 5$ and $c = -6$	A1	oe

Section 2.17

Mark schemes

Q1.

Answer	Mark	Comments
-3 -2 -1 with no other values	B3	any order
		B2 –3 –2 –1 with one other value
		or
		any two of –3 –2 –1 with no other values
		or
		inequality for which the only integer values are $-3 -2 -1$
		eg $-4 < x < 0$ or $-3 \le x \le -1$
		or $-4 < x \le -1$
		B1 –4 < <i>x</i> < 4
		or –3 –2 –1 (0) 1 2 3 with no other values

or one of –3 –2 –1 with no other values
or $x^2 < \frac{48}{3}$ or $x^2 < 16$
or $3(x + 4)(x - 4) < 0$
or $(x + 4)(x - 4) < 0$

Additional Guidance	
B1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts	
Answer –3 –2 –1 with no other values (no need to check working)	B3
-4 < x < 0 is equivalent to the two inequalities $x > -4 x < 0$ etc	B2
For B1 allow equivalent factorised inequalities or equivalent	B1
inequalities with coefficient 1 for x^2	B1
eg1 $(3x + 12)(x - 4) < 0$	B1
eg2 3(4 + x)(4 - x) > 0	
48	
eg3 $x^2 - 3 < 0$	
(-4, 0) or [-3, -1] etc	B2
(-4, 4)	B1
Only $x > -4$ or only $x < \pm 4$ or only $x < 4$	B0
Condone B3 response in working with any inequality on answer line	B3
Condone B3 response in working with 3 on answer line	B3
(3 is likely to be the number of integers)	
Only invalid inequalities with no or incorrect answer	B0
Only equations with no or incorrect answer	

Q2.

(x-4)(x-7)	M1	ое
$\frac{-11\pm\sqrt{(-11)^2-4\times1\times28}}{2\times1}$		

or $\frac{11}{2} \pm \sqrt{\frac{9}{4}}$		
Identifies 4 and 7	A1	may be on a graph or implied by an inequality using 4 and 7
x < 4 x > 7	A1	do not allow incorrect notation eg 4 > x > 7

Additional Guidance		
x < 4 with M1 not scored	Zero	
x > 7 with M1 not scored	Zero	
Both $x < 4$ and $x > 7$ in working but only one on answer line	M1A 1A0	
<i>x</i> < 4 and <i>x</i> > 7	M1A2	
<i>x</i> < 4 and <i>x</i> > 7	M1A2	

Q3.

Answer	Mark	Comments
Alternative method 1		
$(x \pm a)(x \pm b)$	M1	<i>ab</i> = 96 or <i>a</i> + <i>b</i> = -20
(x - 8)(x - 12) or $(x =) 8$ and $(x =) 12$	A1	
9, 10 and 11	A1	A0 if extra values seen

Alternative method 2		
(x - 10) ² - 100 (+ 96) (< 0)	M1	oe eg (x - 10) ² - 4 (< 0)
8 < <i>x</i> < 12 or (<i>x</i> =) 8 and (<i>x</i> =) 12	A1	
9, 10 and 11	A1	A0 if extra values seen

Alternative method 3		
$\frac{20 \pm \sqrt{\{(20)^2 - 4 \times 1 \times 96\}}}{2}$ or	M1	accept (20) ² or $(-20)^2$ for b^2 in the discriminant

$\frac{20 \pm \sqrt{(-20)^2 - 4 \times 1 \times 96}}{2}$		
8 and 12	A1	
9, 10 and 11	A1	A0 if extra values seen

Additional Guidance

9, 10 and 11 using Trial and Improvement - all correct is 3 marks, otherwise 0 marks.

No working ... treat as Trial and Improvement

For alt 3 ... substitution in the formula must be correct

Q4.

Answer	Mark	Comments
$2x^2 - x - 3$ or $2x^2 - 3x + 2x - 3$	M1	
4 > -x - 3	M1dep	oe eg 7 > - <i>x</i>
x > -7 or $-7 < x$	A1	

Additional Guidance	
= used instead of > throughout and not recovered on answer line	M2A0

Q5.

Answer	Mark	Comments
-18 < 5 <i>x</i> or 8 - 26 < 5 <i>x</i>	M1	5x or x term isolated on one side of a correct inequality
or -5 <i>x</i> < 26 - 8 or -5 <i>x</i> < 18		or a correct mequality
or <i>x</i> > -3.6 or - <i>x</i> < 3.6		
-3	A1	

Additional Guidance	
Trial and improvement (with no incorrect working) with correct answer. Could be as little as one trial	M1, A1
Trial and improvement with incorrect answer or choice	M0, A0

-5x < 18 but $x < -3.6$ (error) answer -3 (common double error, answer should be -4 following the first error)	M1, A0
8 - 5x = 26 leading to $x = -3$	M1, A1
8 - 5x = 26 not leading to $x = -3$	M0, A0

Q6.

Answer	Mark	Comments
Alternative method 1		
$-\frac{11}{5} < x \le \frac{5}{5}$ or $-2.2 < x \le \frac{5}{5}$	M1	oe eg $x \le \frac{5}{5}$ and $x > -\frac{11}{5}$
$-\frac{11}{5} < x \le 1 \text{ or } -2.2 < x \le 1$ or $-2 \le x \le 1$ or $-2, -1, 0, 1$	A1	oe eg $x \le 1$ and $x > -\frac{11}{5}$
$6x - 4x \le 4 - 7$ or $2x \le -3$	M1	oe Collects terms
$x \le -\frac{3}{2} \text{ or } x \le -1.5$ or $x < -\frac{3}{2} \text{ or } x < -1.5$ or $x \le -2 \text{ or } -2, -3 (, -4,)$	A1	$-2.2 < x \le -1.5$ or $-2 \le x \le -1.5$ implies M1A1M1A1
−2 with no other values given	A1	Must have gained M1A1M1A1

Alternative method 2		
Shows that −2 satisfies either	M1	eg −11 < −10 ≤ 5
$-11 < 5x \le 5 \text{ or } 6x + 7 \le 4x + 4$		or $5x = -10$ and yes
Shows that −2 satisfies both	A1	
$-11 < 5x \le 5$ and $6x + 7 \le 4x + 4$		
Shows that −1 does not satisfy	M1	eg -6 + 7 > -4 + 4
$6x + 7 \le 4x + 4$		
or		
shows that −3 does not		

satisfy		
−11 < 5 <i>x</i> ≤ 5		
Shows that −1 does not satisfy	A1	
$6x + 7 \le 4x + 4$		
and		
shows that −3 does not satisfy		
−11 < 5 <i>x</i> ≤ 5		
-2 with no other values given	A1	Must have gained M1A1M1A1

Alternative method 3		
$-\frac{11}{5} < x \le \frac{5}{5}$ or $-2.2 < x \le \frac{5}{5}$	M1	oe eg $x \le \frac{5}{5}$ and $x > -\frac{11}{5}$
$-\frac{11}{5} < x \le 1 \text{ or } -2.2 < x \le 1$	A1	oe eg $x \le 1$ and $x > -\frac{11}{5}$
or $-2 \le x \le 1$ or $-2, -1, 0, 1$		
Shows that −2 satisfies	M1	eg 6 × −2 + 7 = −5
$6x + 7 \le 4x + 4$		and 4 × −2 + 4 = −4 🗸
or		
shows that −1 does not satisfy		
$6x + 7 \le 4x + 4$		
Shows that −2 satisfies	A1	
$6x + 7 \le 4x + 4$		
and		
shows that −1 does not satisfy		
$6x + 7 \le 4x + 4$		
-2 with no other values given	A1	Must have gained M1A1M1A1

Alternative method 4		
$6x - 4x \le 4 - 7$ or $2x \le -3$	M1	oe
		Collects terms

$x \le -\frac{3}{2}$ or $x \le -1.5$	A1	
or $x < -\frac{3}{2}$ or $x < -1.5$		
or $x \le -2$ or $-2, -3 (, -4,)$		
Shows that −2 satisfies	M1	eg −11 < −10 ≤ 5
−11 < 5 <i>x</i> ≤ 5		or $5x = -10$ and yes
or		
shows that −3 does not satisfy		
$-11 < 5x \le 5$		
Shows that −2 satisfies	A1	
−11 < 5 <i>x</i> ≤ 5		
and		
shows that −3 does not satisfy		
$-11 < 5x \le 5$		
-2 with no other values given	A1	Must have gained M1A1M1A1

Additional Guidance	
Allow eg max 1 and min -2.2 for $-2.2 < x \le 1$, unless contradicted by a list of values	
Condone omission of non-critical values from lists eg -2 , -1 , 1	
Using = signs when solving inequalities can score M marks only unless recovered	
Incorrect notation eg \leq for $<$ can score M marks only	
If answers to trials evaluated they must be correct	
Choose the scheme that favours the student	
-2 identified as the only integer with no valid working	Zero

Q7.

	Answer	Mark	Comments
(a)	6 18	M1	
	$3 \le w < 3$ or $2 \le w \dots$		

or		
<i>w</i> < 6		
$2 \le w < 6 \text{or} 2 \le w \le 5$	A1	
2 3 4 5	A1ft	ft M1 A0 and inequality of form $a \le w < b$ or $a \le w \le b$
		SC2 Answer 2 3 4 5 6 or
		3 4 5 with M0
		SC1 Answer 6 9 12 15 with M0
		SC1 $\frac{6}{3} < w \le \frac{18}{3}$

(b) 16 B1

(c)	their min from (a) – 3	M1	
	- 1	A1ft	ft their min from (a)

Q8.

Answer	Mark	Comments
Alternative method 1		
(a + 2)(a - 2) or	M1	2 and -2 may be seen on a
2 and −2 identified		graph or within inequalities
8 – 2 <i>b</i> < 2 or <i>b</i> > 3	M1	oe
–2 < 8 – 2 <i>b</i> or <i>b</i> < 5	M1	Allow any inequality symbol
		Allow inequality symbol to be =
		M3 −2 < 8 −2 <i>b</i> < 2
3 < <i>b</i> < 5	A1	SC3 2 < <i>b</i> < 6 or -4 < <i>b</i> < 12

Additional Guidance		
Both inequalities $b < 5$ and $3 < b$ given as their answer	M3 A1	
<i>a</i> < 2	MO	
8 – 2 <i>b</i> = 2	M1	

<i>b</i> = 3	M0 A0
Must use 2 in 2nd M1	
Must use –2 in 3rd M1	
3 or 5 identified implies M1	
3 and 5 identified	M1 M1 M1
Working with = throughout can gain a maximum of M1 M1 M1 A0 unless recovered	
Condone use of any letter other than a	

Alternative method 2		
$(8 - 2b)^2 < 4$	M1	Allow any inequality symbol Allow inequality symbol to be = Must see 4
$64 - 16b - 16b + 4b^2$ or $64 - 32b + 4b^2$ or $60 - 16b - 16b + 4b^2$ or $60 - 32b + 4b^2$	M1	oe Correct expansion or correct expansion – 4
(2 <i>b</i> – 10)(2 <i>b</i> – 6) or (<i>b</i> – 5)(<i>b</i> – 3) or 3 and 5 identified	M1	Correct factorisation of $60 - 32b + 4b^2$ or correctly substitutes into quadratic formula or correctly completes the square to an equation
3 < <i>b</i> < 5	A1	SC3 2 < <i>b</i> < 6 or -4 < <i>b</i> < 12

Additional Guidance	
Both inequalities $b < 5$ and $3 < b$ given as their answer	M3 A1
Must expand correctly for 2nd M1	
Must factorise correctly for 3rd M1	
3 and 5 identified	

Condone use of any letter other than *a*

Section 2.18 Mark schemes

Q1.

Answer	Mark	Comments
$w^{13}x^7 \div w^3x^2$ or $w^{10}x^5$	M1	$w^{13}x^7$
or		oe eg $w^3 x^2$
$x^2y^5 = w^{10}x^7$ or $y^5 = \frac{w^{10}x^7}{x^2}$		may be embedded eg $\sqrt[5]{w^{10}x^5}$
or		
$w^{3}y^{5} = w^{13}x^{5} \text{ or } y^{5} = \frac{w^{13}x^{5}}{w^{3}}$		
$W^2 \chi^{(1)}$	A1	oe eg xw ²

Additional Guidance	
$y = W^{10} x^5$	M1A0

Q2.

Answer	Mark	Comments
$\frac{8}{27}_{x^9y^3 \text{ or }} \frac{8x^9y^3}{27}$	B2	oe B1 Two of the three components correct and simplified

Additional Guidance		
Allow multiplication signs for B2 and B1		
Allow 0.296 or 0.296 as a correct component		
0.296 <i>x</i> ⁹ <i>y</i> ³	B1	

$\frac{8}{27}$ x^9y^3 followed by incorrect further work (only penalise B2 responses)	B1
$8x^9y^3 \div 27$	B1
$(\frac{2}{(3)})^{3}x^{9}y^{3}$	B1
$\frac{8}{27}_{x^9}$	B1
$8x^9 \times 27y^3$	B1
$\frac{8}{27}_{x^9 + y^3}$	B0

Q3.

Answer	Mark	Comments
$q^{-3}(x) r^{-2}$ or $\frac{1}{q^{3}(x)r^{2}}$	B2	B1 q^{-3} or r^{-2} or $(q^{6}(\times)r^{4})^{\frac{1}{2}}$ or
		$(q^{-6}(x)r^{-4})^{\frac{1}{2}}$ or $\frac{1}{\sqrt{q^{6}(x)r^{4}}}$ or
		$\sqrt{\frac{1}{q^6(x)r^4}}$ or $(q^3(x)r^2)^{-1}$
		or $p^{-1} = q^3 (x) r^2$
		or $\frac{1}{p} = q^3 (\times) r^2$
		or $p^2 = q^{-6} (x) r^{-4}$
		or $p^2 = \frac{1}{q^6(x)r^4}$

Q4.

Answer				er	Mark	Comments
C ^{5p}	or	C ¹²	or	5 <i>p</i> = 12	M1	

		12		$2\frac{2}{2}$	A1	oe
2.4	or	5	or	5		

Q5.

Answer	Mark	Comments
Alternative method 1		
$a^{\frac{16}{12}}$ or $a^{\frac{4}{3}}$	M1	oe eg $a^{\frac{8}{6}}$
$a^{\frac{10}{12}}$ or $a^{\frac{5}{6}}$	A1	
<i>a</i> ⁵	A1	

Alternative method 2				
$a^{\frac{18}{4}} \times a^{\frac{42}{12}}$ or $a^{\frac{96}{12}}$ or a^{8}	M1	oe eg $a^{\frac{9}{2}} \times a^{\frac{7}{2}}$		
$\frac{a^8}{a^3}$	A1	oe eg $\frac{a^{\frac{96}{12}}}{a^3}$		
<i>a</i> ⁵	A1			

Q6.

Answer	Mark	Comments
32 <i>c</i> ² <i>d</i> ² or 32(<i>cd</i>) ²	B3	B2 (numerator =) $64c^{3}d^{6}$
		or
		single term answer with two of 32, c^2 and d^2 (not in a denominator)
		B1 single term answer with one of 32, c^2 and d^2 (not in a denominator)
		SC2 factorised correct expression
		eg 16 <i>cd</i> (2 <i>cd</i>)

Additional Guidance				
$2c^2d^2$ or $32c^2d$ or $32c^2$ or $\frac{32d^2}{c^3}$ or $\frac{c^2d^2}{32}$ or $64(cd)^2$ etc	B2			
$32c^3d \text{ or } c^2 \text{ or } \frac{d^2}{c} \text{ or } \frac{c^2d}{32} \text{ or } \frac{32}{c^2} \text{ etc}$	B1			
$\frac{32c^2d^2}{1}$ or $\frac{32(cd)^2}{1}$	B2			
Allow denominator of 1 in a B2 or B1 answer eg $\frac{32c^2d}{1}$	B2			
Multiplication signs in a correct expression eg 32 × c^2 × d^2	B2			
Allow multiplication signs in a B2, SC2 or B1 answer eg 32 × $c^3 \times d$	B1			
Do not accept 25 for 32 eg $25c^2d$	B1			
If answer line scores B1 or B0 check working lines for possible response for up to 2 marks				
$32c^2d^2$ in working with different answer on answer line	B2			

Q7.

Answer	Mark	Comments
2 and 3	B1	coefficients
x and x^3	B1	
y and y ⁴	B1	

Additional Guidance				
$2xy + 3x^3y^4$ or $xy(2 + 3x^2y^3)$ scores B3	B3			
If no B marks awarded then $3x^3(2y^{-2} + 3x^2y)$	SC1			
or $3x^3y(2y^{-3} + 3x^2)$				
or $3x^3y^{-2}(2 + 3x^2y^3)$				
or $3x^2(2xy^{-2} + 3x^3y)$				
or $3x^2y(2xy^{-3} + 3x^3)$				
or $3x^2y^{-2}(2x + 3x^3y^3)$ seen in the working for the numerator				
Penalise incorrect further working for the B marks				

Q8.

Answer	Mark	Comments
0.2 or $\frac{1}{5}$ or 5^{-1}	B2	B1 125 ^{-1/3} or ⁻³ √125
		or $\left(\frac{1}{125}\right)^{\frac{1}{3}}$ or $\sqrt[3]{\frac{1}{125}}$
		or $\frac{1}{125^{\frac{1}{3}}}$ or $\frac{1}{\sqrt[3]{125}}$
		or $\left(\frac{1}{5^3}\right)^{\frac{1}{3}}$ or $\sqrt[3]{\frac{1}{5^3}}$
		or $\frac{\frac{1}{1^3}}{5}$ or $\frac{\sqrt[3]{1}}{5}$
		or $\frac{1}{y^3} = 125$ or $y^3 = \frac{1}{125}$
		or $\frac{1}{y} = 5$ or $\frac{1}{y} = \sqrt[3]{125}$ or $\frac{1}{y} = 125^{\frac{1}{3}}$
		or $\frac{1}{y} = 125^{\frac{1}{3}}$

Q9.

Answer	Mark	Comments
$\frac{1}{79} = \frac{64}{9}$	B1	Can be done at any stage
$x^{\frac{2}{3}} = \frac{9}{64}$ or $(_{3}\sqrt{x})^{2} = \frac{9}{64}$ or $_{3}\sqrt{(x^{2})} = \frac{9}{64}$	M1	oe or the reciprocals $1 \div x^{\frac{2}{3}} = \frac{64}{9}$ or $\frac{1}{(\sqrt[3]{x})^2} = \frac{64}{9}$ or $\frac{1}{\sqrt[3]{x^2}} = \frac{64}{9}$
$x = \left(\frac{9}{64}\right)^{\frac{3}{2}}$	M1	oe or the reciprocals $\frac{1}{x} = \left(\frac{64}{9}\right)^{3/2}$

or $_{3}\sqrt{x} = \sqrt{\left(\frac{9}{64}\right)}$		or $\frac{1}{\sqrt{3}\sqrt{x}} = \sqrt{\left(\frac{64}{9}\right)}$
or $x^2 = \left(\frac{9}{64}\right)^3$		or $\frac{1}{x^2} = \left(\frac{64}{9}\right)^3$
$x = \left(\frac{3}{8}\right)^3$	A1	
or $\frac{1}{x} = \left(\frac{8}{3}\right)^3$		
$(x =) \pm \frac{27}{512}$ or $\frac{27}{512}$ or $-\frac{27}{512}$	A1	SC3 for 512 27

Q10.

Answer	Mark	Comments
6 ² (= 36)	M1	
\sqrt{x} = their 36 – 33	M1	ое
9	A1	

Q11.

Answer	Mark	Comments
8 seen as 2 ³ or	M1	oe eg 2 ^{3a}
16 seen as 2⁴		
2 ^{3^a} and 2 ⁴ seen	M1	oe eg 2 ^{3<i>a</i> + 4}
$a^2 - 3a - 4 (= 0)$	M1	oe equation eg $a^2 = 3a + 4$
		ft if all three terms expressed as powers of 2 and a^2 term correct
 1 and 4 with correct method seen 	A1	

Additional Guidance		
Trial and improvement or answer(s) only		
First 2 M marks can be awarded even if subsequent method is not clear		
2nd M1 may be implied		

eg $2^{a^2} = 2^{2^a}$ $2^3 = 8$ $2^4 = 16$	M1
$2a = 3a + 4$ ($3a + 4$ implies 2nd M1) (a^2 term not correct so 3^{rd}	M1 M0
mark is M0	A0
<i>a</i> = -4	
$16 = 2^4 (2^3)^a = 2^{a^3}$	M1 M0
$a^2 = a^3 + 4$	M1 M0

Q12.

Answer	Mark	Comments
x ⁷	B2	B1 $\sqrt{x^{14}}$ or $(x^{14})^{\frac{1}{2}}$ or $\sqrt{x^{5+9}}$
		or $(x^{5+9})^{\frac{1}{2}}$ or $x^{\frac{14}{2}}$ or $x^{\frac{5+9}{2}}$
		or $x^{\frac{5}{2}} \times x^{\frac{9}{2}}$ or $x^{2.5} \times x^{4.5}$

Q13.

Answer	Mark	Comments
(−2) ³ or −8 seen	B1	
$-\sqrt{x}$ = (their -8) - 3 or $-\sqrt{x}$ - 11 or \sqrt{x} = 11	M1	
121	A1	

Additional Guidance

-2³ (no brackets) is B0 unless -8 seen For M1 it must say $\sqrt{x} = \dots$ or $-\sqrt{x} = \dots$ Note: ... (their -8) cannot be -2 ... and it must be **correct** manipulation from their -8 eg $3^{-\sqrt{x}} = (-2)^{3}$ or $3^{-\sqrt{x}} = -8$ B1 $\sqrt{x} = -11$ M0 (error in manipulating terms) x = 121 A0 (correct answer from wrong

working)
WORKING

Q14.

Answer	Mark	Comments
5 <i>x</i> ⁶ or (−)6 <i>x</i> ⁵ or	M1	
$ax^6 - bx^5$ with $a > 0$ and $b > 0$		
$5x^6 - 6x^5$	A1	

Additional Guidance	
$\frac{5x^6 - 6x^5}{1}$	M1 A0
$\frac{5x^6}{1}$ or (-) $\frac{6x^5}{1}$	M1 A0

Q15.

Answer	Mark	Comments
$\left(\frac{56}{4}\right)^3$ or 14^3 or $4^3x = 56^3$ or $64x = 175616$	M1	oe oe equation in $x^{(1)}$ or $\frac{1}{x^{(1)}}$
or $\frac{56^3}{x} = 4^3$ 2744	A1	

Additional Guidance		
$\sqrt[3]{x} = \frac{56}{4}$ or $\sqrt[3]{x} = 14$ with no correct further work	MO	
$56x^{-\frac{1}{3}} = 4$	MO	
Solving $\frac{56}{3x} = 4$	MO	
Answer 14 ³ with 2744 not seen in working	M1A0	
Embedded solution	M1A0	

Answer	Mark	Comments
Alternative method 1 Powers of 3		
$(3^2)^{0.5^p}$ or $(3^3)^{2^p-1}$	M1	oe powers of 3
or		eg 3^{p} or 3^{6p-3}
3 ^{2×0.5} <i>p</i> +4		or 3 ^{<i>p</i>+4}
		brackets not needed if intention clear
		eg 3 ^{20.5} /
$(3^2)^{0.5p}$ and 3^4 and $(3^3)^{2^p-1}$	M1dep	oe powers of 3
or		eg 3^p and 3^4 and $3^{6^{p-3}}$
$3^{2 \times 0.5^{p+4}}$ and $(3^3)^{2^{p-1}}$		or
		$3^{p_{+4}}$ and $3^{6^{p_{-3}}}$
$2 \times 0.5p + 4 = 3(2p - 1)$	M1dep	oe equation
or		dep on M2
p + 4 = 6p - 3		
1.4 or $\frac{7}{5}$	A1	oe

Alternative method 2 Powers of 9		
9 ^{0.5p+2} or (9 ^{1.5}) ^{2p-1}	M1	oe power of 9
		eg 9 ^{3<i>p</i>-1.5}
		brackets not needed if intention clear
		eg 9 ^{1.52p} -1
9 ² and (9 ^{1.5}) ^{2P-1}	M1dep	oe powers of 9
or		eg 9^2 and $9^{3^{p-1.5}}$
9 ^{0.5p+2} and (9 ^{1.5}) ^{2p-1}		or
		9 ^{0.5p+2} and 9 ^{3p-1.5}
0.5p + 2 = 1.5(2p - 1)	M1dep	oe equation
or		dep on M2
0.5p + 2 = 3p - 1.5		
1.4 or $\frac{7}{5}$	A1	oe

$(2)^{0.5 p}$	M1	oe power of 27
$\left(27^{\frac{2}{3}}\right)^{0.5p}$		eg $27^{\frac{2}{3} \times 0.5 p}$ or $27^{\frac{1}{3} p}$
		brackets not needed if intention clear
		eg 27 ³
$\left(\frac{2}{2}\right)^{0.5 p} = \frac{4}{2}$	M1dep	
$\left(27^{\frac{2}{3}}\right)^{0.5p}$ and $27^{\frac{4}{3}}$		eg $27^{\frac{2}{3} \times 0.5 p}$ and $27^{\frac{4}{3}}$
		or
		$27^{\frac{1}{3}^{p}}$ and $27^{\frac{4}{3}}$
		M2 $27^{\frac{2}{3} \times 0.5 p + \frac{4}{3}}$ or $27^{\frac{1}{3}p + \frac{4}{3}}$
$\frac{2}{3} \times 0.5p + \frac{4}{3} = 2p - 1$	M1dep	oe equation
		dep on M2
or		
$\frac{1}{3}p + \frac{4}{3} = 2p - 1$		
1.4 or 5	A1	ое

Alternative method 4 Powers of 81		
(81 ^{0.5}) ^{0.5p} or (81 ^{0.75}) ^{2p -1}	M1	oe power of 81
or		eg 81 ^{0.25} or 81 ^{1.5} -0.75
81 ^{0.5×0.5} ^{<i>p</i>+1}		or 81 ^{0.25p+1}
		brackets not needed if intention clear
		eg 81 ^{0.50.5} <i>p</i>
(81 ^{0.5}) ^{0.5p} and (81 ^{0.75}) ^{2p -1}	M1dep	oe powers of 81
or		eg 81 ^{0.25p} and 81 ^{1.5p -0.75}
81 ^{0.5×0.5p+1 and (81^{0.75})^{2p-1}}		or
		81 ^{0.25p+1} and 81 ^{1.5p -0.75}
$0.5 \times 0.5p + 1 = 0.75(2p - 1)$	M1dep	oe equation

or		dep on M2
0.25p + 1 = 1.5p - 0.75		
1.4 or $\frac{7}{5}$	A1	ое

Additional Guidance	
Mark positively if potentially more than one scheme used	
Answer 1.4	M3 A1
Correct equation implies M3	
Just seeing expressions not in an equation and not as powers scores zero	M0 M0
eg Alt 1 6 p – 3 and p + 4 not in an equation and not as powers of 3	MO
Allow recovery of missing brackets	
Use of logs with answer not 1.4 - escalate	

Q17.

Answer	Mark	Comments
Alternative method 1		
$3\frac{1}{2} \times 3\frac{1}{2} + 3\frac{1}{2} \times 3$ $\frac{3}{2} + 3\frac{1}{2} \times 3\frac{3}{2} + 3$ $\frac{3}{2} \times 3\frac{3}{2} + 3$	M1	oe allow an error in one term
or √3√3 + √3√27 + √3√27 + √27√27		
3 or 9 or 27	M1dep	
48	A1	

Alternative method 2		
$\sqrt{3}$ and $3\sqrt{3}$	M1	$3\sqrt{3}$ must come from correct working
(4√3) ²	M1dep	
48	A1	

Alternative method 3		
$\left(3^{\frac{1}{2}}\right)^2(1+3)^2$	M1	oe
3 × 4 ²	M1dep	oe
48	A1	

Additional Guidance

Alt 1 mark scheme ... likely to see a 3 (or 9 or 27) somewhere, so need to be careful that the M1 mark has been earned before awarding A1

In alt 1, for the first M1, we want to see an attempt at the full expansion of the correct terms

Probably 4 terms, but there could be 3 if they combine the middle two terms.

eg $(\sqrt{3} + 27)(\sqrt{3} + 27)$ scores M0 because it ought to be $\sqrt{27}$ not 27

Q18.

Answer	Mark	Comments
$2\sqrt{x} - 10 = 2^3$ or $2\sqrt{x} - 10 = 8$	M1	
or $2\sqrt{x} = 18$		
$\sqrt{x} = \frac{2^3 + 10}{2}$ or $\sqrt{x} = \frac{8 + 10}{2}$	M1dep	
or $\sqrt{x} = 9$ or $4x = 18^2$		
or $x = 9^2$		
<i>x</i> = 81	A1	± 81 scores A0

Q19.

Answer	Mark	Comments
$2x^2 - 3x = 7$	M1	at least two terms correct
$2x^2 - 3x - 7 (= 0)$	A1	oe 3-term quadratic equation

$\frac{-3\pm\sqrt{(-3)^2-4\times2\times-7}}{2\times2}$ or $\frac{3}{4}\pm\sqrt{\frac{65}{16}}$	M1	oe correct attempt to solve their 3- term quadratic equation
2.77	A1	2.77 and – 1.27 is A0

Q20.

Answer	Mark	Comments			
Alternative method 1 Proces	Alternative method 1 Processes the brackets then divides				
$\frac{5x}{10} + \frac{6x}{10}$	M1	oe valid common denominator with both numerators correct eg $\frac{10x}{20} + \frac{12x}{20}$			
11x 10	A1	oe single term eg $\frac{22x}{20}$ or $1.1x$ may be implied eg by single term with roots evaluated that is equivalent to $\frac{11}{5x^2}$			
$\frac{x^{6+2}}{2}$ or $\frac{x^3}{2}$	M1	may be implied eg by multiplication by $\frac{2}{x^3}$			
their $\frac{11x}{10} \times \frac{2}{x^3}$ or $\frac{22x}{10x^3}$ or $\frac{22}{10x^2}$ or $\frac{11x}{5x^3}$ or $\frac{22}{10}x^{-2}$	M1dep	oe multiplication eg $\frac{11k}{10} \times 2x^{-3}$ $\frac{11k}{10}$ can be unprocessed dep on 2nd M1			
$\frac{11}{5x^2}$ or $\frac{11}{5}x^{-2}$ or $2.2x^{-2}$	A1	allow $2\frac{1}{5}x^{-2}$ or $\frac{2.2}{x^2}$			

Alternative method 2 Divides then expands the brackets		
$\frac{x^{6+2}}{2}$ or $\frac{x^3}{2}$	M1	may be implied

		eg by multiplication by $\frac{2}{x^3}$
$\left(\frac{x}{2} + \frac{3x}{5}\right) \times \frac{2}{x^3}$	M1dep	oe multiplication eg $\left(\frac{x}{2} + \frac{3x}{5}\right) \times 2x^{-3}$
$\frac{2x}{2x^3} + \frac{6x}{5x^3}$ or $\frac{1}{x^2} + \frac{6}{5x^2}$	M1dep	oe expansion of brackets
$\frac{10x}{10x^3} + \frac{12x}{10x^3}$ or $\frac{5}{5x^2} + \frac{6}{5x^2}$	M1dep	oe valid common denominator with both numerators correct
or $\frac{22x}{10x^3}$ or $\frac{22}{10x^2}$ or $\frac{11x}{5x^3}$		eg $\frac{10x^4}{10x^6} + \frac{12x^4}{10x^6}$ or $\frac{22x^4}{10x^6}$
or $\frac{22}{10}x^{-2}$		roots must be processed
$\frac{11}{5x^2}$ or $\frac{11}{5}x^{-2}$ or $2.2x^{-2}$	A1	allow $2\frac{1}{5}x^{-2}$ or $\frac{2.2}{x^2}$

Additional Guidance	
Any single fraction with roots evaluated that is equivalent to $\frac{11}{5x^2}$	4 marks
Allow inclusion of \pm from the square root for up to 4 marks	
$\frac{11}{5x^2}$ in working with answer $\frac{11}{5}x^2$	4 marks
11x	M1A1
Alt 1 10 subsequently squared and not recovered	M0M0A0

Q21.

Answer	Mark	Comments
$x + 1 = 6x^2$		oe
or	M1	
$6x^2 - x - 1 (= 0)$		
(3x + 1)(2x - 1)		
or		
$\frac{1\pm\sqrt{(-1)^2-4\times6\times-1}}{2\times6}$	M1dep	

or			
$\frac{1}{12} \pm \sqrt{\frac{25}{144}}$			
$-\frac{1}{3}$ and $\frac{1}{2}$	A1	oe values	

Additional Guidance	
Incorrect quadratic	M0M0A0

Q22.

Answer	Mark	Comments	
Alternative method 1 Uses po	Alternative method 1 Uses powers of 2		
$(16^{x} =) 2^{4x}$ or $((16^{x})^{x} =) (2^{4})^{x^{2}}$	M1	implied by ((16 ^x) ^x =) 2^{4x^2}	
		may be implied by 3rd M1	
$((16^x)^x =) 2^{4x^2}$	M1dep	implied by 2^{4x^2+3x}	
		may be implied by 3rd M1	
Correct quadratic equation	M1dep	eg $4x^2 = -3x$ or $4x^2 + 3x = 0$ or $4x = -3$	
or correct linear equation		or $2^{4x^2} = 2^{-3x}$ or $2^{4x^2 + 3x} = 2^0$	
or correct equation involving indices with the same base		do not allow if the equation is from incorrect working	
		do not allow if the only equation is	
		$x = -\frac{3}{4}$	
_3	A1	oe	
M3 and 4		ignore inclusion of answer 0	

$((16^x)^x =) 16^{x^2}$	M1	oe
and $\left(\frac{1}{2^{3x}}\right) = \frac{1}{16^{\frac{3x}{4}}}$		eg ((16 ^x) ^x =) 16 ^{x²} and $\left(\frac{1}{2^{3x}}\right) = 16^{-\frac{3x}{4}}$
		may be implied by 3rd M1
Correct quadratic equation or correct linear equation	M1dep	eg $x^2 = -\frac{3}{4}x$ or $4x^2 + 3x = 0$
or correct equation involving indices with the same base		or $16^{x^2} = 16^{-\frac{3x}{4}}$
		do not allow if the equation is from incorrect working
		do not allow if the only equation is $x = -\frac{3}{4}$
3	A1	ое
M3 and $\overline{4}$		ignore inclusion of answer 0

Alternative method 3 Uses powers of 4		
$(16^{x} =) 4^{2x} \text{ or } ((16^{x})^{x} =) (4^{2})^{x^{2}}$ or $\left(\frac{1}{2^{3x}}\right) = \frac{1}{\left(\frac{1}{4^{2}}\right)^{3x}}$	M1	implied by $((16^x)^x =) 4^{2x^2}$ or $\left(\frac{1}{2^{3x}}\right) = \frac{1}{4^{\frac{3x}{2}}}$ or $\left(\frac{1}{2^{3x}}\right) = 4^{-\frac{3}{2}x}$ may be implied by 3rd M1
$((16^x)^x =) 4^{2x^2}$ and $\left(\frac{1}{2^{3x}}\right) = \frac{1}{4^{\frac{3x}{2}}}$	M1dep	oe $((16^{x})^{x} =) 4^{2x^{2}} \text{ and } \left(\frac{1}{2^{3x}}\right) 4^{-\frac{3}{2}x}$ may be implied by 3rd M1
Correct quadratic equation or correct linear equation or correct equation involving indices with the same base	M1dep	eg $2x^2 = -\frac{3}{2}x$ or $4x^2 + 3x = 0$ or $4^{2x^2} = 4^{-\frac{3}{2}x}$ do not allow if the equation is from incorrect working do not allow if the only equation is $x = -\frac{3}{4}$
M3 and $-\frac{3}{4}$	A1	oe ignore inclusion of answer 0

Alternative method 4 Takes the <i>x</i> th root of each side and uses powers of 2		
(16 ^x =) 2 ^{4x} or 16 ^x = $\left(\frac{1}{2^{3x}}\right)^{\frac{1}{x}}$	M1	oe eg $16^{x} = \sqrt[x]{\frac{1}{2^{3x}}}$ or $16^{x} = \frac{1}{2^{3}}$ or $16^{x} = 2^{-3}$ may be implied by 3rd M1
$2^{4x} = \left(\frac{1}{2^{3x}}\right)^{\frac{1}{x}}$	M1dep	oe eg $2^{4x} = \frac{1}{2^3}$ may be implied by 3rd M1
Correct quadratic equation or correct linear equation or correct equation involving indices with the same base	M1dep	eg 4x = -3 or $2^{4x} = 2^{-3}$ do not allow if the equation is from incorrect working do not allow if the only equation is $x = -\frac{3}{4}$
M3 and $\frac{-\frac{3}{4}}{4}$	A1	oe ignore inclusion of answer 0

Additional Guidance	
Up to M2 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts	
Allow $2^{4 \times x \times x}$ for 2^{4x^2} etc	
Responses using other powers eg powers of 8 can be escalated	Escalate
Ignore simplification or conversion if correct answer seen	

Q23.

Mark	Comments
M1	oe eg a4×m
A1	

	Additional	Guidance
--	------------	----------

Section 2.19 Mark schemes

Q1.

Answer	Mark	Comments
$5n^2 - 5n + 3n - 3$	M1	oe 4 terms with 3 correct including a term in n^2
$5n^2 - 5n + 3n - 3$	A1	Fully correct
		oe eg 5 <i>n</i> ² – 2 <i>n</i> – 3
6 <i>n</i> ² – 3	A1	
$3(2n^2 - 1)$ or states that both terms are multiples of 3	A1	oe

Q2.

Answer	Mark	Comments
Alternative method 1 Expands the given brackets		
$((2n + 1)^{2} =) 4n^{2} + 2n + 2n + 1$ or $((2n - 1)^{2} =) 4n^{2} - 2n - 2n + 1$	M1	oe expansion eg ($(2n + 1)^2 =$) $4n^2 + 4n + 1$ may be seen in a grid may be seen embedded in second mark ignore any denominator
$4n^{2} + 2n + 2n + 1 - 4n^{2} + 2n + 2n + 2n - 1$ or $4n^{2} + 4n + 1 - 4n^{2} + 4n - 1$ or $4n^{2} + 2n + 2n + 1 - (4n^{2} - 2n - 2n + 1)$ and 8n with no errors seen or	M1dep	terms in any order ignore any denominator

$4n^2 + 4n + 1 - (4n^2 - 4n + 1)$ and $8n$ with no errors seen		
M2 seen and valid explanation	A1	eg1 M2 seen and $\frac{8n}{4} = 2n$
		eg2 M2 seen and $8n$ is even and when divided by 4 it is even

Alternative method 2 Difference of two squares		
(2n + 1 + 2n - 1)(2n + 1 - (2n - 1))	M1	ignore any denominator
or		
(2n + 1 + 2n - 1)(2n + 1 - 2n + 1)		
M1 seen	M1dep	ignore any denominator
and $4n \times 2$ with no errors seen		
M2 seen and valid explanation	A1	eg1 M2 seen and $\frac{4n \times 2}{4} = 2n$ eg2 M2 seen and $\frac{8n}{4} = 2n$ eg3 M2 seen and $8n$ is even and when divided by 4 it is even

Additional Guidance	
Do not allow missing brackets even if recovered	
Alt 1 $4n^2 + 4n + 1 - 4n^2 - 4n + 1$	M1M0
Alt 1 $4n^2$ + $2n$ + $2n$ + 1 - ($4n^2 - 2n - 2n + 1$)	M1
$= 4n^2 + 4n + 1 - 4n^2 - 4n - 1 = 8n$ (8 <i>n</i> but error seen)	MO
Alt 1 Only 8 <i>n</i>	MOMO
Alt 1 2nd M1 Allow unnecessary brackets	M1M1
eg $4n^2 + 4n + 1 - (4n^2 - 4n + 1) = (4n^2 - 4n^2) + (4n + 4n) + (1 - 1)$	
Alt 2 $(2n + 1 + 2n - 1)(2n + 1 - 2n - 1)$	M0M0
Alt 2 $(2n + 1 + 2n - 1)(2n + 1 - (2n - 1))$	M1
= $(2n + 1 + 2n - 1)(2n + 1 - 2n - 1) = 4n \times 2$ (4n × 2 but error seen)	MO

Alt 2 $(2n + 1 + 2n - 1)(2n + 1 - (2n - 1)) = 8n$	M1M0
Alt 2 Only $4n \times 2$	MOMO
Response only referring to odds and evens or only involving substitution	M0M0A0
Assuming the expression simplifies to 2 <i>k</i> and working back could score up to M1M1	
Setting up an equation eg $(2n + 1)^2 - (2n - 1)^2 = 4$ could score up to M1M1	
For A1 do not allow incorrect use of =	M1M1
eg $4n^2$ + $2n$ + $2n$ + 1 - $4n^2$ + $2n$ + $2n$ - 1	A0
$=\frac{8n}{4}=2n$	

Q3.

Answer	Mark	Comments
$4n^2 + 6n + 6n + 9$	M1	allow one error
or 4 <i>n</i> ² + 12 <i>n</i> + 9		implied by $4n^2 + 12n + k$
		or a <i>n</i> ² + 12 <i>n</i> + 9
$8n^3 + 12n^2 + 24n^2 + 36n +$	M1dep	oe
18 <i>n</i> + 27		ft their $4n^2 + 6n + 6n + 9$
		allow one error
$8n^3 + 36n^2 + 54n + 27$	A1	
or $9n^3 + 36n^2 + 54n + 27$		
$9n^3 + 36n^2 + 54n + 27$	A1	oe
and $9(n^3 + 4n^2 + 6n + 3)$		eg (9 n^3 + 36 n^2 + 54 n + 27) ÷ 9
		$= n^3 + 4n^2 + 6n + 3$
		or
		$9n^3 + 36n^2 + 54n + 27$ and all coefficients
		are divisible by 9

Answer	Mark	Comments
$(5n - 3)^2 + 1$	M1	
25 <i>n</i> ² – 15 <i>n</i> – 15 <i>n</i> + 9 + 1	M1	Allow 1 error
		Must have an n^2 term
$25n^2 - 30n + 10$	A1	
$5(5n^2-6n+2)$	B1ft	oe
		e.g., shows that all terms divide by 5 or explains why the expression is a multiple of 5

Alternative method 1		
Use of $an^2 + bn + c$ for terms of quadratic sequence	M1	
i.e., any one of		
a+b+c=5		
4a + 2b + c = 50		
9a + 3b + c = 145		
3a + b = 45	M1	For eliminating c
5 <i>a</i> + <i>b</i> = 95		
$25n^2 - 30n + 10$	A1	
$5(5n^2-6n+2)$	B1ft	ое
		e.g., shows that all terms divide by 5 or explains why the expression is a multiple of 5

Alternative method 2		
5 50 145 290	M1	25 <i>n</i> ²
45 95 145		
2^{nd} difference of 50 \div 2 (= 25)		
Subtracts their $25n^2$ from terms of sequence	M1	-30 <i>n</i>
-20 -50 -80		
$25n^2 - 30n + 10$	A1	
$5(5n^2 - 6n + 2)$	B1ft	oe

Q5.

Answer	Mark	Comments
Alternative method 1		
$8(c^2 + 2)$ or $3(c^2 + 2)$	M1	
$\frac{8(c^2 + 2)}{3(c^2 + 2)}$	A1	
$\frac{8}{3} + \frac{1}{3} = 3$	A1	

Alternative method 2	Alternative method 2			
Converts to a valid common denominator with at least one numerator correct eg1 $\frac{3(8c^2 + 16)}{3(3c^2 + 6)} + \frac{3c^2 + 6}{3(3c^2 + 6)}$ eg2 $\frac{8c^2 + 16 + c^2 + 2}{3c^2 + 6}$	M1	oe Other valid common denominators include $9c^2$ + 18 and $3(c^2$ + 2)		
Makes into a single fraction with terms collected eg1 $\frac{27c^2 + 54}{3(3c^2 + 6)}$ eg2 $\frac{9c^2 + 18}{3c^2 + 6}$	A1	oe		
Shows that fraction simplifies to 3	A1	oe Must see a correct common quadratic factor and = 3		

eg1
$$\frac{9(3c^2+6)}{3(3c^2+6)} = 3$$

eg2 $\frac{3(3c^2+6)}{3c^2+6} = 3$
eg3 $\frac{9(c^2+2)}{3(c^2+2)} = 3$

Additional Guidance

Answer of 3 does not gain marks without correct working for M1 A1 (1st) seen

Do not allow $\frac{3}{1}$ unless subsequently becomes 3

Q6.

Answer	Mark	Comments
Alternative method 1		
$9x^2 + 15x + 15x + 25 - 50x$	M1	allow only one error in sign, omission or coefficient but not in
or		more than one of these
$9x^2 + 30x + 25 - 5x^2 - 50x$		could be written as 2 separate expansions or in a grid
or		
$9x^2 + 15x + 15x + 25$		
and $-5x^2 - 50x$ or $5x^2 + 50x$		
$4x^2 - 20x + 25$	A1	
$4x^2 - 20x + 25$	M1dep	factorises or completes the square or uses the quadratic
and		formula correctly. Answer
$(2x-5)^2$ or $(2x-5)(2x-5)(2x-5)$		required for M1 dep
or $4(x - 2.5)^2$		
or $x = 2.5$ or $b^2 - 4ac$ = 0 from quadratic formula		
$(2x - 5)^2$ or $4(x - 2.5)^2$ (are squared terms) and so are always ≥ 0	A1	oe there must be a stated conclusion eg equal roots and positive quadratic so must be

|--|

Alternative method 2		
9 <i>x</i> ² + 15 <i>x</i> + 15 <i>x</i> + 25 - 50x	M1	allow only one error in sign, omission or coefficient but not in
or		more than one of these
$9x^2 + 30x + 25 - 5x^2 - 50x$		could be written as 2 separate expansions or in a grid
or		coparisions of in a grid
$9x^2 + 15x + 15x + 25$		
and -5 <i>x</i> ² - 50 <i>x</i> or 5 <i>x</i> ² + 50x		
$4x^2 - 20x + 25$	A1	
$4x^{2} - 20x + 25$ and $\frac{d}{dx} = 8x - 20$ when x = 25	M1dep	uses calculus to find stationary point
Tests for minimum by using eg $x = 2$ and $x = 3$ or by using 2nd derivative or concludes argument by saying this is a positive quadratic curve with minimum point (2.5, 0), hence always ≥ 0	A1	oe there must be a stated conclusion

Q7.

Answer	Mark	Comments
Alternative method 1		
2(2-5x) + 3(3x-1)	M1	
or 4 – 10 <i>x</i> or 9 <i>x</i> – 3		
4 - 10x + 9x - 3 = 1 - x	M1dep	
$(1 - x)^2 = 1 - 2x + x^2$	A1	must see working for M2
$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1	

Alternative method 2

$4(2-5x)^2+6(2-5x)(3x-1)$	M1	oe
+ 6(2 - 5x)(3x - 1) + 9(3x - 1)		allow + 12(2 - 5 <i>x</i>)(3 <i>x</i> - 1) for
1) ²		+ $6(2 - 5x)(3x - 1) + 6(2 - 5x)(3x - 1)$
$4(4 - 10x - 10x + 25x^2)$	M1dep	oe
+ $6(6x - 2 - 15x^2 + 5x)$		must see expansions
+ $6(6x - 2 - 15x^2 + 5x)$		must see working for 1st M1
$+9(9x^2 - 3x - 3x + 1)$		allow + $12(6x - 2 - 15x^2 + 5x)$ for
$= 16 - 40x - 40x + 100x^2 +$		+ $6(6x - 2 - 15x^2 + 5x)$
36 <i>x</i> - 12		+ $6(6x - 2 - 15x^2 + 5x)$
$-90x^{2} + 30x + 36x - 12 - 90x^{2}$		
$+ 30x + 81x^2 - 27x - 27x + 9$		
$1 - 2x + x^2$	A1	must see working for M2
$2 - 5x + 3x - 1 + x2 = 1 - 2x + x^2$	B1	

Alternative method 3		
2(2-5x) + 3(3x-1)	M1	ое
or $4 - 10x$ or $9x - 3$		
$(4 - 10x + 9x - 3)^2$	M1dep	ое
$= 16 - 40x + 36x - 12 - 40x + 100x^{2}$		must see expansions
$-90x^{2} + 30x + 36x - 90x^{2} + 81x^{2}$		
-27x - 12 + 30x - 27x + 9		
$1 - 2x + x^2$	A1	must see working for M2
$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1	

Additional Guidance	
Allow working down both sides of an equation/identity	
M2A1 is for working on $(2A + 3B)^2$	

B1 is for working on $A + B + C$	
1 – 2x + x^2 with working for M2 seen and 2 – 5x + 3x – 1 + x^2 = $x^2 - 2x + 1$	4 marks
$1 - x^2 = 1 - 2x + x^2$ (do not allow missing brackets even if recovered)	

Section 2.20 – 2.21 Mark schemes

Q1.

	Answer	Mark	Comments
(a)	$33n^{2} = 32(n^{2} + 2)$ or $\frac{64 - n^{2}}{11n^{2} + 22} = 0$	M1	oe (both denominators should be cleared for the first method)
	8	A1	ignore –8 in working as long as only 8 stated in answer

Additional Guidance

May use T&I and will be 2 marks if they get the correct answer (0 marks without the answer)

(b) 3 B1

Additional Guidance		
3		
Condone 1		

Q2.

	Answer	Mark	Comments
(a)	1420 – 5 <i>n</i> = 0 or 5 <i>n</i> = 1420	M1	oe eg 5(284 - <i>n</i>) = 0
	or ¹⁴²⁰ / ₅		
	284	A1	

Additional Guidance		
$\frac{1420 - 5n}{1420 + 5n} = 0$	Zero	
1420 - 5n = 0(1420 + 5n)	Zero	
<i>n</i> = 284	M1A1	
1420 – $5n = 0$ and 1420 + $5n = 0$ with correct equation not selected	Zero	
±284 is A0		
Embedded answer	M1A0	

(b) -1

B1	

Additional Guidance		
$-\frac{5}{5}$	B0	
$-1 n \to \infty$	B1	
-1 → ∞	B0	
$x \rightarrow -1$ (any letter other than <i>n</i>)	B1	

Q3.

	Answer	Mark	Comments
(a)	105 (numerator)	M1	
	or 145 (denominator)		
	21 29	A1	
	29		

(b)	Alternative method 1		
	$\frac{2 + \frac{7}{n^2}}{3 - \frac{2}{n^2}}$	M1	
	$\frac{7}{n^2}_{\infty}$ and $\frac{1}{n^2}$ both $\rightarrow 0$ as $n \rightarrow \infty$	A1	

154

Alternative method 2		
as $n \to \infty$ $2n^2 + 7 \to 2n^2$	B1	
and		
$3n^2 - 2 \rightarrow 3n^2$		
limiting value is $\frac{2n^2}{3n^2} = \frac{2}{3}$	B1	

Q4.

	Answer	Mark	Comments
(a)	32n > 11(3n - 7)	M1	allow $32n = 11(3n - 7)$
	32 <i>n</i> > 33n – 77		oe
	or 77 > <i>n</i>	M1dep	must be correct inequality unless recovered
	76	A1	

Additional Guidance	
n = 77 with final answer 76	M2A1
n = 77 with final answer not 76	M1M0A0

(b)	32	B1	oe value
	3		

Additional Guidance	
32	
Ignore conversion to decimal if 3 seen	

Q5.

Answer	Mark	Comments
Alternative method 1		
$(n-3)^2$	M1	Allow $(n - 3)(n - 3)$ for $(n - 3)^2$
$(n-3)^2 - 9 + 14$	A1	Allow $(n - 3)(n - 3)$ for $(n - 3)^2$
or		

$(n-3)^2 + 5$		
$(n - 3)^2 \ge 0$ then adding 5 so always positive	A1ft	oe Allow $(n - 3)(n - 3)$ for $(n - 3)^2$
or		ft M1 A0
States minimum value is 5		Must see M1 and attempt (n –
or		$(3)^2 + k$
States (3, 5) is minimum point		ft $(n - 3)^2 + k$ where $k > 0$
		SC2 States minimum value is 5
		or
		States (3, 5) is minimum point

Alternative method 2		
Quadratic curve sketched in first quadrant with minimum point above the <i>x</i> -axis	M1	Labelling on axes not required
(discriminant =) −20	A1	
States no (real) roots	A1ft	oe Allow roots \rightarrow solutions
		ft M1 A0
		Must see M1 and attempt a discriminant
		ft discriminant < 0
		SC2 States minimum value is 5
		or
		States (3, 5) is minimum point

Alternative method 3			
2n - 6 = 0	M1	oe equation	
		e.g. 2 <i>n</i> = 6 or <i>n</i> = 3	
(second derivative =) 2	A1		
States minimum value is 5	A1ft	oe	
or		ft M1 A0	
States (3, 5) is minimum point		Must see M1 and attempt a second derivative	
		ft (second derivative) > 0	
		SC2 States minimum value is 5	

	or
	States (3, 5) is minimum point

Q6.

	Answer	Mark	Comments
(a)	Alternative method 1		
	1 <i>- a</i> + 2 <i>a</i> = 1 + <i>a</i>	B1	oe
	and		Allow $3(1 - a + 2a) = 3 + 3a$ if no
	3(1 + a) = 3 + 3a		incorrect working seen
	Alternative method 2		
	$\frac{3+3a}{3} = 1+a$	B1	oe
	and		
	1 + <i>a</i> - 2 <i>a</i> = 1 - <i>a</i>		

Additional Guidance	
Allow 1 <i>a</i> for <i>a</i> throughout	
Alt 1	B0
a + 2a = 3a	
3 × 1 = 3	
3 + 3 <i>a</i> (incorrect working seen)	
Alt 1	B1
-a + 2a = a	
$3 \times a = 3a$	
3 × 1 = 3	
3 + 3 <i>a</i>	
3(1 + a) = 3 + 3a	B0
Alt 1	B0
1 - a + 2a = 1 + a	
$3 \times 1 + a = 3 + 3a$ (incorrect working seen)	
Alt 1	B1

1 - a + 2a = 1 + a 1 + a $\frac{\times 3}{3 + 3a}$ Must use algebra

(b) Alternative method 1

Alternative method 1		
9 + 15 <i>a</i> or 3(3 + 5 <i>a</i>) or	M1	ое
3(3 + 3a + 2a)		
their (9 + 15 <i>a</i>) = 16	M1	Must expand any brackets correctly and collect terms
and		correctly
their 15 <i>a</i> = 16 – their 9		their (9 + 15 <i>a</i>) must be at least two terms
7 15 or 0.46 or 0.47	A1ft	ft from M1 M0 or M0 M1 with 1 error
		Allow 0.466 or 0.467
		13 SC1 3 or 4.33 oe
		SC1 3 or 4.33 oe

Additional Guidance	
7 15 (may be seen in working) with subsequent attempt at evaluation	M1 M1 A1
3(3 + 5a) = 16	M1
9 + 5a = 16 (error in expansion)	MO
5 <i>a</i> = 7	
a = 1.4 (1 error)	A1ft
3(3 + 5a) = 16	M1
6 + 15a = 16 (error in expansion)	MO
15a = 22 (error in collection)	
$a = \frac{22}{15}$ (2 errors)	A0ft
May just state a 3rd term but cannot use $3 + 3a$ for the 3rd term	
9 + 8 <i>a</i> = 16	MO

8a = 7 (no brackets to expand and collects term correctly)	
$a = \frac{7}{8}$ (2 errors)	A1ft
For A1ft accept answers rounded to at least 2sf if not an integer	
3(3 + 5a) = 6 + 5a is two errors so not possible to award A1ft	
1 - a = 16	

Alternative method 2		
3(3 + 5 <i>a</i>) or 3(3 + 3 <i>a</i> + 2 <i>a</i>)	M1	oe
their $(3 + 5a) = \frac{16}{\text{their } 3}$	M1	Must divide by their 3 correctly and collect terms correctly
and 16		their (3 + 5 <i>a</i>) must be at least two terms
their $5a = \overline{\text{their } 3} - \text{their } 3$		
7 15 or 0.46 or 0.47	A1	ft from M1 M0 or M0 M1 with 1 error
		Allow 0.466 or 0.467
		13
		SC1 3 or 4.33 oe

Additional Guidance	
$\frac{7}{15}$ (may be seen in working) with subsequent attempt at evaluation	M1 M1 A1
3(3+5a) = 16	M1
16	MO
9 + 5 $a = \overline{3}$ (error in division by 3)	
$5a = \frac{16}{3} - 9$	A1ft
$a = -\frac{11}{15}$ (1 error)	
3(3+5a) = 16	M1
16	MO
9 + 5 $a = \overline{3}$ (error in division by 3)	
$5a = \frac{16}{3} + 9$ (error in collection)	A0ft

$a = \frac{43}{15} (2 \text{ errors})$	
For A1ft accept answers rounded to at least 2sf if not an integer	
3(3 + 5a) = 6 + 5a is two errors so not possible to award A1ft	

Q7.

Answer	Mark	Comments
7 + 12√5 + 6(9 – 2√5)	M1	oe eg 7 + 6 × 9 or 7 + 54
or		or $6 \times -2 = -12$
$12\sqrt{5} + 6(-2\sqrt{5}) = 0$		
or		allow 7 + 12√5 + (n – 1)(9 – 2√5)
12√5 ÷ 2√5 = 6		with $n = 7$
or		with $n = r$
states that need to add 6 lots of		allow 7 + 12 $\sqrt{5}$ + n(9 – 2 $\sqrt{5}$)
(9 – 2 √5)		with $n = 6$
or		
7th term		

Additional Guidance				
61 in working lines with 7(th) on answer line	M1 A0			
If repeatedly adding $(9-2\sqrt{5})$ they must stop after adding 6 lots or clearly select the relevant one				
Answer 6 or 6th term with M1 not seen	M0 A0			
Ignore any conversions to decimals				
Beware $(9-2\sqrt{5})(9+2\sqrt{5}) = 61$	M0 A0			

Q8.

Answer	Mark	Comments
$(n=1) 4a = \frac{10 \times 1 - 2}{3}$	M1	$(n=2)$ $9a = \frac{10 \times 2 - 2}{3}$ or

		$(n = 3)$ $14a = \frac{10 \times 3 - 2}{3}$ or $(n = 4)$ $19a = \frac{10 \times 4 - 2}{3}$
$\frac{2}{3}$	A1	oe

Alternative method		
$5an - a = \frac{10n - 2}{3}$	M1	ое
2 3	A1	ое

Q9.

Answer	Mark	Comments
$k^2 = 2(14k + 30)$	M1	oe correct equation with fractions eliminated
<i>k</i> ² – 28 <i>k</i> – 60 (= 0)	M1dep	oe equation
(k + 2)(k - 30) (= 0)	M1	oe
or $\frac{-28 \pm \sqrt{(-28)^2 - 4 \times 1 \times -60}}{2 \times 1}$		correct attempt to solve their 3- term quadratic equation
or 14 ± √256		
30	A1	30 and −2 is A0

Q10.

	Answer	Mark	Comments
(a)	30 + 12 <i>k</i> or 12 <i>k</i> + 30	B1	allow factorised eg $6(5 + 2k)$

Additional Guidance	
30 + 12k seen in working but incorrect answer eg 5 + 2k or –2.5	B0
Answer line $30 + 12k$ and expression for the <i>n</i> th term eg $30 + 4nk - 4k$	B0
30 + 8k + 4k	B0

30 + 12k unambiguously indicated as 4th term (eg in given sequence) with answer line blank

Alternative method 1 Works out a correct expression for the 100th term			
$30 + 99 \times 4k$	M1	oe eg 30 + (100 – 1) × 4k	
or 30 + 396 <i>k</i>		or 30 + 4 <i>k</i> + 98 × 4 <i>k</i>	
or 100 × 4 <i>k</i> + 30 – 4 <i>k</i>		or 30 + 8 <i>k</i> + 97 × 4 <i>k</i>	
		or 30 + 12 <i>k</i> + 96 × 4 <i>k</i>	
99 × 4 <i>k</i> = 525 – 30	M1dep	oe	
or 396 <i>k</i> = 495		terms must be collected in an equation	
or 495 ÷ 396		eg 396 k – 495 = 0	
1.25 or $\frac{5}{4}$ or $1\frac{1}{4}$	A1	495 oe eg 396	

Alternative method 2 Uses a common difference (eg d)		
30 + 99 × <i>d</i> or 30 + 99 <i>d</i>	M1	oe eg 30 + (100 – 1) × <i>d</i>
$4k = \frac{525 - 30}{99} \text{ or } 4k = \frac{495}{99}$ or $4k = 5$ or $5 \div 4$	M1dep	oe terms must be collected in an equation eg $4k - 5 = 0$
1.25 or $\frac{5}{4}$ or $1\frac{1}{4}$	A1	oe eg 396

Alternative method 3 Uses their (a) to work out an expression for the 100th term

their (a) + 96 × 4 k	M1	their (a) must be in terms of k
or their (a) + $384k$		their (a) cannot be 30 + 4 <i>k</i> or 30 + 8 <i>k</i>
Collection of terms for	M1dep	their (a) must be of the form c +
their (a) + 384 <i>k</i> = 525		<i>dk c</i> ≠ 0 <i>d</i> ≠ 0
Solution to their equation rounded to 1 dp or better	A1ft	ft their (a) and M2

Additional Guidance

Ignore simplification		
Alt 1 Do not allow		
Alt 3 (a) 12 <i>k</i>	(b) $12k + 384k$ $396k = 525$ 1.326	M1M0A0ft
Alt 3 (a) 30 + 16 <i>k</i> 1.238	(b) $30 + 16k + 384k$ $400k = 525 - 400k$	30 M1M1A1ft
Alt 3 (a) 12 <i>k</i> + 60 60 1.2	(b) 12 <i>k</i> + 60 + 96 × 4 <i>k</i> 396 <i>k</i> = 525	5 – M1M1A1ft

Section 2.22 Mark schemes

Q1.

Answer	Mark	Comments
Alternative method 1		
2nd difference = 8 or $a = 4$	M1	sight of $4n^2$ implies this mark
subtract their 4n ²	M1	subtracting 4 16 36 64
or sight of three of 6 17 28 39		the coefficient of their $4n^2$ will come from half the value of their 2nd difference
subtract their $11n \text{ or } b = 11$	M1dep	dep on 2nd M mark
or tests $4n^2 + 11n$ and compares to original sequence		
or sight of three of 15 38 69 108		
$4n^2 + 11n - 5$	A1	

Alternative method 2		
Any three of these	M1	
a + b + c = 10		
4a + 2b + c = 33		
9a + 3b + c = 64		
16 <i>a</i> + 4 <i>b</i> + <i>c</i> = 103		

Any two of these $3a + b = 23$	M1dep	
5a + b = 31 $7a + b = 39$		
a = 4 and $b = 11$	A1	
$4n^2 + 11n - 5$	A1	

Alternative method 3		
<i>a</i> = 4	M1	
3 <i>a</i> + <i>b</i> = 33 - 10	M1	ое
and substitutes their <i>a</i> in this equation		
<i>b</i> = 11	A1	
$4n^2 + 11n - 5$	A1	

Additional Guidance	
SC3 for 4 <i>n</i> ² – 11 <i>n</i> + 5	
Condone $4x^2 + 11x - 5$ or	eg $4x^2$ + 11 n – 5 (mixed letters)

Q2.

Answer	Mark	Comments
Alternative method 1		
(Second differences =) -2 or $-n^2$	M1	second differences seen at least once and not contradicted may be seen by the sequence
0 1 1 4 0 9 (- 3 - - 16)	M1dep	subtracts – n^2 from the given terms
or 1 5 9 (13)		or
or		subtracts the given terms from –
- 1 - 0 - 4 - 1 - 9 - 0 (- 16 - - 3) or -1 -5 - 9 (-13)		n^2
$-n^2 + 4n - 3$	A1	oe eg $4n - 3 - n^2$

Alternative method 2		
Any three of	M1	using <i>n</i> th term = $an^2 + bn + c$

a + b + c = 0		
4a + 2b + c = 1		
9a + 3b + c = 0		
16a + 4b + c = -3		
3a + b = 1	M1dep	ое
and $5a + b = -1$		obtains two equations in the same two variables
or		
a = -1 and $b = 4$		
$-n^2 + 4n - 3$	A1	oe eg $4n - 3 - n^2$

Alternative method 3		
(Second differences =) -2 or $-n^2$	M1	second differences seen at least once and not contradicted may be seen by the sequence
3a + b = 1	M1dep	oe eg $-3 + b = 1$ or $b = 4$
and substitutes $a = -1$		
$-n^2 + 4n - 3$	A1	oe eg $4n - 3 - n^2$

Additional Guidance		
Condone use of Un	M2A1	
Condone working in different variable(s) eg – n^2 + 4 x – 3 M2A1		
Answer – n^2 scores at least M1		
Condone $-n^2 + 4n - 3 = 0$ or $n = -n^2 + 4n - 3$	M2A1	

Q3.

	Answer	Mark	Comments
(a)	Alternative method 1 (grid)		
	1 5 9	M1	
	4 4 and $2n^2$		
	-4 -9 (-14 -19)	M1dep	subtract 2n ²
	and –5 <i>n</i> (+ <i>c</i>)		

$2n^2 - 5n + 1$	A1	
-----------------	----	--

Alternative method 2 (simultaneous equations)		
Any 3 of:	M1	using n^{th} term = $an^2 + bn + c$
a + b + c = -2		
4a + 2b + c = -1		
9a + 3b + c = 4		
16a + 9b + c = 13		
3a + b = 1 or	M1dep	or any other equation with an unknown eliminated
5 <i>a</i> + <i>b</i> = 5		
$b = -5, c = 1$ so $2n^2 - 5n + 1$	A1	

Alternative method 3 (using terms)		
1 5 9	M1	using n^{th} term = $an^2 + bn + c$
4 4 so <i>a</i> = 2		
3a + b = 1	M1dep	oe
and $a = 2$ substituted in this equation		
$b = -5, c = 1$ so $2n^2 - 5n + 1$	A1	

Additional Guidance	
Condone other letters used eg $2x^2 - 5x + 1$ or even $2n^2 - 5x + 1$	
After finding $a = 2$ they may find the 0th term to get $c = 1$	M2
$2n^2 + 5n - 1$ from Alt 1 but subtracting the wrong way round	SC2

(b)	$n^2 + 10n - 2000 < 0$	M1	the correct inequality needed for this mark and must be written in this form
	(n - 40)(n + 50)	M1	ое
	or $(n + 5)^2 - 25 - 2000$		inequality not needed for this mark
	or $\frac{-10 \pm \sqrt{10^2 - 4 \times 1 \times -2000}}{2}$		condone + instead of \pm as the negative solution has no meaning here

39	A1	

Additional Guidance		
Do not accept T&I		
Incorrect use of inequalities can be recovered by a correct use of inequalities later in the method such as n < 40 near the end	M2	
Incorrect use of inequalities can be recovered for full marks. An answer of 39 after a method that uses an incorrect inequality or = shows inequality has been recovered	M2A1	
An incorrect solution with incorrect use of inequalities can only be awarded the second M mark	M0M1A0	
Correct answer not coming from correct working will not gain any marks	M0A0	
For students who try to complete the square accept $(n + 5)^2 < 2025$ as an oe giving M2 but $(n + 5)^2 = 2025$ would only gain M0M1 unless recovered in the answer		

Q4.

	Answer	Mark	Comments		
(a)	Alternative method 1				
	Second differences -4	M1	Implied by $-2n^2$		
	Subtracts $\frac{\text{their} - 4}{2}n^2$ from given sequence or 304 608 912	M1	At least 3 correct values implies correct method (next term is 1216)		
	$-2n^2 + 304n$	A1	oe eg <i>n</i> (304 - 2 <i>n</i>)		
			Allow any letter		
	Alternative method 2				
	Any 3 of	M1	Using $an^2 + bn + c$		
	a + b + c = 302				
	4a + 2b + c = 600				
	9a + 3b + c = 894				
	16 <i>a</i> + 4 <i>b</i> + <i>c</i> = 1184				
	Correctly eliminates the same letter using two different pairs of equations	M1			

eg		
3 <i>a</i> + <i>b</i> = 600 – 302 and		
5 <i>a</i> + <i>b</i> = 894 – 600		
$-2n^2 + 304n$	A1	oe eg <i>n</i> (304 – 2 <i>n</i>)
		Allow any letter
		Allow $a = -2$ $b = 304$ $c = 0$ if $an^2 + bn + c$ seen earlier

Additional Guidance	
Condone mixed letters and/or inclusion of = 0	M1M1A1
eg1 –2 n^2 + 304 x	M1M1A1
$eg2 - 2n^2 + 304n = 0$	
Alt 1	
2nd differences = 4	MO
300 592 876 1152	M1 A0

Alternative method 3		
<i>a</i> = -2	M1	Using $an^2 + bn + c$
3 <i>a</i> + <i>b</i> = 600 - 302	M1	oe eg <i>b</i> = 304
and		May also see $a + b + c = 302$
substitutes their <i>a</i>		used to obtain <i>c</i>
$-2n^2 + 304n$	A1	oe eg <i>n</i> (304 – 2 <i>n</i>)
		Allow any letter

Alternative method 4		
Second differences -4	M1	
302 + (600 - 302)(n - 1) + 0.5 × their -4(n - 1)(n - 2)	M1	Using $a + d(n - 1) + 0.5c(n - 1)(n - 2)$ a is 1st term d is 2nd term - 1st term c is second differences
$-2n^2 + 304n$	A1	oe eg <i>n</i> (304 – 2 <i>n</i>)

Allow any letter

Additional Guidance	
Condone mixed letters and/or inclusion of = 0	
eg1 –2 n^2 + 304 x	M1 M1 A1
$eg2 - 2n^2 + 304n = 0$	M1 M1 A1

(b)	<i>n</i> (-2 <i>n</i> + 304) or 2 <i>n</i> (- <i>n</i> + 152)	M1	oe
	or 2 <i>n</i> = 304		Factorises correctly to two linear factors
			or
			substitutes correctly in quadratic formula
			or
			correctly completes the square to a correct equation
			or
			simplifies to $an = b$
			ft their quadratic
	152	A1	

Additional Guidance		
152 and 0	M1 A0	
M1 Factorising may be seen after division		
eg if (a) correct $n(-n + 152)$	M1	
Their quadratic must have at least two terms for M1		
Only ft for M1 A0		
If their quadratic in (a) is incorrect, check for M1 A0 using their answer (correct to at least 1dp) if method not shown		
Do not award M1 if their quadratic from (a) has solution $n = 0$		