P
Pearson
Edexcel

Mark Scheme (Results)

November 2020

Pearson Edexcel GCSE In Astronomy (1AS0) Paper 1: Naked eye Astronomy

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020
Publications Code 1ASO_01_2011_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Mark
$\mathbf{1 (a) (i)}$	A NOT feature named B Copernicus C NOT feature named D NOT feature named	(1)
	(1)	

Question number	Answer	Mark
$\mathbf{1 (a) (\text { ii) }}$	A NOT feature named B NOT feature named C NOT feature named	(1)
	D the Sea of Crisis	

Question number	Answer	Mark
$\mathbf{1 (a) (\text { iii) }}$	A NOT feature named B NOT feature named	(1)
	C the Sea of Tranquility D NOT feature named	

Question number	Answer	Mark
1(b)(i)	A Andromeda Galaxy	
	B NOT feature named	(1)
	C NOT feature named	
	D NOT feature named	

Question number	Answer	Mark
$\mathbf{1 (b) (i i) ~}$	A NOT feature named B Fomalhaut C NOT feature named D NOT feature named	(1)
	(1)	

Question number	Answer	Mark
$\mathbf{1 (c)}$	A can show stars that are above the horizon B can show stars that are above the horizon C can show stars that are above the horizon	(1)
	D does NOT show star above the observer's horizon	

Question number	Answer	Mark
2(a)	A incorrect name B incorrect name C incorrect name	(1)
	D Zodiacal Band	

Question number	Answer	Mark
2(b)	P marked on ecliptic and 0° Dec or P marked at 0° Dec and 12 h RA	(1)

Question number	Answer	Additional guidance	Mark
2(c)	RA $=13: 25$ (range 13:20 to 13:27) Dec $=-11$ (range -10.5 to -12$)$	Both values correct to gain mark	(1)

Question number	Answer	Mark
2(d)(i)	A not autumn C not summer D not winter	(1)

Question number	Answer	Mark
2(d)(ii)	Sun is in opposite part of the sky or Sun is located in Virgo in Autumn	(1)

Question number	Answer	Mark
2(e)	Southern (hemisphere) (1) Angles of declination are negative (1)	(2)

Question number	Answer	Mark
3(a)(i)	A Equator	
	B incorrect line	(1)
	C incorrect line	
	D incorrect line	

Question number	Answer	Mark
3(a)(ii)	A incorrect line B incorrect line C incorrect line D Tropic of Capricorn	(1)

Question number	Answer	Mark
3(a)(iii)	A incorrect line B Prime Meridian C incorrect line D incorrect line	(1)

Question number	Answer	Mark
3(b)(i)	A incorrect star	(1)
	B incorrect star	
	C incorrect star	
	D Star $\boldsymbol{\delta}$	

Question number	Answer	Mark
3(b)(ii)	A incorrect star	(1)
	B Star $\boldsymbol{\beta}$	
	C incorrect star	
D incorrect star		

Question number	Answer	Mark
3(b)(iii)	A Star a	(1)
	B incorrect star	
	C incorrect star	
	D incorrect star	

Question number	Answer	Mark
3(b)(iv)	A incorrect star	
	B incorrect star	
D incorrect star		

Question number	Answer	Mark
4(a)(i)	y-axis completed with false origin The 7 large squares on the y-axis should have a range of no more than 12 cm (1)	(3)
All points plotted correctly (1) Best-fit smooth curve drawn (1)		

Question number	Answer	Mark
4(a)(ii)	$12: 02$ (range 12:01-12:03)	(1)

Question number	Answer	Mark
4(a)(iii)	0.5 degrees (range $0.25-0.75$) (1) West (minus) (1)	(2)

Question number	Answer	Mark
4(b)(i)	A incorrect method B The angular distance between the Moon and a certain bright star C incorrect method D incorrect method	(1)

Question number	Answer	Mark
4(b)(ii)	Any 3 from:	(3)
	• Record time of local noon / Sun culminates (1)	
	Measure the difference between recorded time (local noon) and 12:00 (GMT) (1)	A difference of 4 minutes corresponds to 1° of longitude East or West (of the meridian) or difference of 1 minute corresponds to 0.25° of longitude East or West (of the meridian) (1)
	If clock is 'slow' then West of prime meridian (or vice versa) (1)	
	Reference for the need to correct between Mean Solar Time (MST) and Apparent Solar Time (AST) using the	

	Equation of Time (Equation does not need to be given) (1)	No mark awarded for reference to a sundial used on board a ship

Question number	Answer	Mark
5(a)	Can view more of the sky / larger field of view / telescope magnification is too large	(1)

Question number	Answer	Mark
5(b)	Due to perspective	(1)

Question number	Answer	Mark
5(c)	Name based on which constellation the radiant lies within / meteors radiate from	(1)

Question number	Answer	Mark
$\mathbf{6 (a) (i)}$	Northern (hemisphere) (1)	(1)

Question number	Answer	Mark
6(a)(ii)	Any one from: (1) - Correct reference to changing sunrise (rises earlier in summer, later in winter)	(1)
-Correct reference to changing sunset (sets earlier in winter, later in summer) Reference to changing length of day or night (longer days in summer, shorter days in winter)		

Question number	Answer	Mark
6(a)(iii)	A incorrect answer	
	B March and October C incorrect answer D incorrect answer	(1)

Question number	Answer	Mark
6(a)(iv)	Sudden change (of 1 hour) in the time / graph is not a smooth curve	(1)

Question number	Answer	Mark
6(b)(i)	MST = 14:57 (3) Breakdown: Use of EOT $=+4(1)$ Substitution and rearrangement of equation (1) $\begin{aligned} \text { MST } & =\text { AST - EOT } \\ & =15: 01-4 \end{aligned}$ Answer of 14:57 (1) If the EOT is incorrect, candidates can be awarded 1 mark if they have clearly shown the 15:01 - their EOT value.	(3)

Question number	Answer	Mark
6(b)(ii)	EOT would NOT be +19 minutes (1) Because it is not a linear function / does not change regularly with time / maximum value for EOT is less than $+19(1)$	(2)

Question number	Answer	Mark
6(c)	Any two from: (2) - Gnomon / shadow caster must point north - Gnomon / shadow caster must be set to the correct angle / latitude - Gnomon / shadow caster must point to the pole star - Sundial must be level Gnomon / shadow caster must point to the north celestial pole is awarded BOTH marks	(2)

Question number	Answer	Mark
7(a)	Any two from:	(2)
	• Aircraft flashes / satellites do not (usually) flash (1) • Aircraft have coloured lights / satellites appear white (1) - Aircraft can be seen from horizon to horizon / (some) satellites disappear when entering Earth's shadow (1)	

Question number	Answer	Mark
7(b)	Seeing is a measure of how still a star/object will appear (allow how much stars appear to twinkle/atmospheric stability) (1) Weather affects the transparency of the sky (1)	(2)

Question number	Answer	Mark
7(c)(i)	Wait a sufficient amount of time in dark conditions (1)	(1)

Question number	Answer	Mark
7(c)(ii)	Study an object while placing it at the edge / periphery of your vision / field of view	(1)

Question number	Answer	Mark
8(a)	A incorrect answer B incorrect answer C incorrect answer D the Moon's rotational period is equal to the Moon's orbital period	(1)

Question number	Answer	Mark
8(b)	Can see more than 50\% (half) of the lunar surface (1)	(1)

Question number	Answer	Mark
8(c)(i)	Label A at 3 o'clock or 9 o'clock w.r.t. Tycho (within two crater diameters from Tycho) (1)	(1)

Question number	Answer	Mark
8(c)(ii)	Label B at 12 o'clock or 6 o'clock w.r.t. Tycho (within two crater diameters from Tycho) (1)	(1)

Question number	Answer	Mark
$\mathbf{8 (d)}$	$11(.2)(1)$	(1)
	Allow alternative ways of demonstrating this ratio. E.g.	
	$11.2: 1$	
	$1: 0.0895$	
	$380: 17$	

Question number	Answer	Mark
$\mathbf{8 (e) (\mathbf { i })}$	Greater range between high and low tide (1)	
	because gravitational force of the moon is greater (1)	

Question number	Answer	Mark
8(e)(ii)	Shorter phase cycle (1) because rotational period of the Moon around the Earth is shorter (1)	(2)

Question number	Answer	Mark
$\mathbf{8 (e) (i i i) ~}$	Eclipses last longer or Eclipses occur more frequently or Corona not visible (during totality) (1) because Moon appears bigger in the sky (1)	(2)

Question number	Answer	Mark
$\mathbf{9 (a) (\mathbf { i })}$	Either: \bulletAssociation with an event or significant time of the year e.g. harvest, flooding of the Nile etc. or Religious association with the bright star	(1)

Question number	Answer	Additional guidance	Mark
$\mathbf{9 (a) (\text { ii) }}$	24800 (or 25 000) years (3) Calculation: Difference in angles $=29^{\circ}$ AND Difference in dates $=2000$ years (1) Ratio of 360° and difference angle (1) $\frac{360}{29}$	Correct answer gains all 3 marks	(3)
	Ratio multiplied by difference in dates to give the correct answer (1) $\frac{360}{29} \times 2000$		

Question number	Answer	Mark
9(b)	Spring/Vernal Equinox (or 19/20/21 March) (1)	(2)
	Autumn Equinox (or 21/22/23/24 September) (1)	

Question number	Answer	Mark	
$\mathbf{9 (c) (\mathbf { i) }}$		(2)	
		Polaris in the correct position such that "Pointers" align with Polaris (allow for seasonal variations in the position) (1)	
	Arrow does not need to be shown on diagram		

Question number	Answer	Mark
9(c)(ii)	Direction on the horizon (azimuth) gives North (1) Altitude (above the horizon) (1) gives latitude (1)	(3)

Question number	Answer	Mark
9(c)(iii)	Polaris will appear to move further from the Celestial North Pole (1) And will become an inaccurate measure for North /Latitude (1)	(2)

| Question
 number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 0 (a) (i)}$ | | (1) |

| Question
 number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 0 (a) (i i)}$ | | (1) |

Question number	Answer	Mark
$\mathbf{1 0 (b)}$	Any two from: \bullet Moon is orbiting around the Earth (producing a moving shadow) (1) • Moon's projected shadow is small on Earth's surface (1) • Earth is spinning on its axis (1)	(2)

Question number	Answer	Mark
$\mathbf{1 0 (c)}$	A incorrect answer B apogee C incorrect answer D incorrect answer	(1)
	(1)	

Question number	Answer	Additional guidance	Mark
10(d)	Earth Sun distance $=154$ million km (3 sig figs) (3) Calculation: Ratio of Sun's diameter to Moon's diameter $\begin{equation*} \frac{1.39 \times 10^{6}}{3470}(=401) \tag{1} \end{equation*}$ equal to ratio of Sun's distance to Moon's distance $\frac{\text { Sun's Distance }}{\text { Moon's Distance }}=\frac{1.39 \times 10^{6}}{3470}(=401)$ or Sun's distance $=401 \times$ Moon'sdistance or Sun's distance $=401 \times 384000$ Sun's distance $=154$ million km	Correct answer gains all 3 marks Note: an answer of 150 million km or $1.5 \times 10^{8} \mathrm{~km}$ does NOT automatically gain the full three marks because this value is given on the Formulae and Data Sheet. 150 million km gains full marks provided there is evidence of working and rounding down to 2 sig fig.	(3)

Question number	Answer	Mark
$\mathbf{1 0 (e) (i)}$	B 2 A incorrect answer	
C incorrect answer		
D incorrect answer		

Question number	Answer	Mark
$\mathbf{1 0 (e) (i i)}$	A incorrect answer B incorrect answer C incorrect answer	(1)
	D 5	

Question number	Answer	Mark	
$\mathbf{1 0 (f)}$	Measure the time it takes the Moon to travel from: $1^{\text {st }}$ to $2^{\text {nd }}$ umbral contact (position 2 to position 3) or $3^{\text {rd }}$ to $4^{\text {th }}$ umbral contact (position 5 to position 6)	(3)	
	Measure the time it takes the Moon to travel from: $1^{\text {st }}$ to $3^{\text {rd }}$ umbral contact (position 2 to position 5) or $2^{\text {nd }}$ to 4 $4^{\text {th }}$ umbral contact (position 3 to position 6)	(1)	

Question number	Answer	Mark
$\mathbf{1 0 (g)}$	Moon's orbit does not lie on the ecliptic or They are not exactly in line or They are not in perfect alignment or Moon's orbit inclined	(1)

